|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "e66db2b9", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "from IPython.display import display, HTML\n", |
| 11 | + "display(HTML(\"<style>.container { width:100% !important; }</style>\"))\n", |
| 12 | + "plotwidth=40" |
| 13 | + ] |
| 14 | + }, |
| 15 | + { |
| 16 | + "cell_type": "code", |
| 17 | + "execution_count": null, |
| 18 | + "id": "84cbfad0", |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "from WwDec.main import *\n", |
| 23 | + "\n", |
| 24 | + "import matplotlib.pyplot as plt\n", |
| 25 | + "import seaborn as sns\n", |
| 26 | + "from matplotlib.colors import ListedColormap\n" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "markdown", |
| 31 | + "id": "5bf5e25c", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "# Globals" |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": null, |
| 40 | + "id": "d1d4d3c5", |
| 41 | + "metadata": {}, |
| 42 | + "outputs": [], |
| 43 | + "source": [ |
| 44 | + "# Source of inspiration from covariatns, see:\n", |
| 45 | + "# https://github.com/hodcroftlab/covariants/blob/master/web/data/clusters.json\n", |
| 46 | + "#\n", |
| 47 | + "# Keep in sync with covspectrum, see:\n", |
| 48 | + "# https://github.com/cevo-public/cov-spectrum-website/blob/develop/src/models/wasteWater/constants.ts\n", |
| 49 | + "color_map = {\n", |
| 50 | + " 'B.1.1.7': '#D16666',\n", |
| 51 | + " 'B.1.351': '#FF6665',\n", |
| 52 | + " 'P.1': '#FFB3B3',\n", |
| 53 | + " 'B.1.617.1': '#66C265',\n", |
| 54 | + " 'B.1.617.2': '#66A366',\n", |
| 55 | + " 'BA.1': '#A366A3',\n", |
| 56 | + " 'BA.2': '#cfafcf',\n", |
| 57 | + " 'BA.4': '#8a66ff',\n", |
| 58 | + " 'BA.5': '#585eff',\n", |
| 59 | + " 'BA.2.12.1': '#0400e0',\n", |
| 60 | + " 'BA.2.75': '#008fe0',\n", |
| 61 | + " 'BA.2.75.2': '#208fe0', # improv\n", |
| 62 | + " 'BQ.1.1': '#8fe000', # improv\n", |
| 63 | + " 'XBB': '#dd6bff',\n", |
| 64 | + " 'undetermined': '#969696',\n", |
| 65 | + "}" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "code", |
| 70 | + "execution_count": null, |
| 71 | + "id": "a4277738", |
| 72 | + "metadata": {}, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "# Overwrite globals set by WwDec.main:\n", |
| 76 | + "# temporary, globals\n", |
| 77 | + "\n", |
| 78 | + "# zst needs python's Zstandard \n", |
| 79 | + "tally_data = \"./work-vp-test/variants/tallymut.tsv.zst\" # zst needs python's Zstandard # \"./tallymut_line.tsv\"\n", |
| 80 | + "out_dir = (\n", |
| 81 | + " \"./out\"\n", |
| 82 | + ")\n", |
| 83 | + "\n", |
| 84 | + "import yaml\n", |
| 85 | + "# load variants configuations\n", |
| 86 | + "with open(\"work-vp-test/variant_config.yaml.old\", \"r\") as file:\n", |
| 87 | + " conf_yaml = yaml.load(file, Loader=yaml.SafeLoader)\n", |
| 88 | + "variants_list = conf_yaml[\"variants_list\"]\n", |
| 89 | + "variants_pangolin = conf_yaml[\"variants_pangolin\"]\n", |
| 90 | + "variants_not_reported = conf_yaml[\"variants_not_reported\"]\n", |
| 91 | + "start_date = conf_yaml[\"start_date\"]\n", |
| 92 | + "end_date = conf_yaml.get(\"end_date\") # optionnal, usually absent in ongoing surveillance, and present in articles with subset of historical data\n", |
| 93 | + "\n", |
| 94 | + "to_drop = conf_yaml[\"to_drop\"]\n", |
| 95 | + "cities_list = conf_yaml[\"locations_list\"]\n", |
| 96 | + "\n", |
| 97 | + "# var dates\n", |
| 98 | + "with open(\"work-vp-test/var_dates.yaml\", \"r\") as file:\n", |
| 99 | + " conf_yaml.update(yaml.load(file, Loader=yaml.SafeLoader))\n", |
| 100 | + "\n", |
| 101 | + "# display the current config\n", |
| 102 | + "conf_yaml" |
| 103 | + ] |
| 104 | + }, |
| 105 | + { |
| 106 | + "cell_type": "markdown", |
| 107 | + "id": "fb8868cd", |
| 108 | + "metadata": {}, |
| 109 | + "source": [ |
| 110 | + "# Load and preprocess data" |
| 111 | + ] |
| 112 | + }, |
| 113 | + { |
| 114 | + "cell_type": "code", |
| 115 | + "execution_count": null, |
| 116 | + "id": "73776b2b", |
| 117 | + "metadata": {}, |
| 118 | + "outputs": [], |
| 119 | + "source": [ |
| 120 | + "df_tally = pd.read_csv(tally_data, sep=\"\\t\", parse_dates = [ \"date\" ], dtype={\"location_code\": \"str\"})#.drop(columns=['proto'])\n", |
| 121 | + "df_tally.head()" |
| 122 | + ] |
| 123 | + }, |
| 124 | + { |
| 125 | + "cell_type": "code", |
| 126 | + "execution_count": null, |
| 127 | + "id": "612dc75c", |
| 128 | + "metadata": {}, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "set(df_tally.columns) - set(variants_pangolin.keys()) - {'base','batch','cov','date','frac','gene','plantcode','plantname','pos','proto','sample','var'}" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "code", |
| 136 | + "execution_count": null, |
| 137 | + "id": "af36e51f", |
| 138 | + "metadata": {}, |
| 139 | + "outputs": [], |
| 140 | + "source": [ |
| 141 | + "preproc = DataPreprocesser(df_tally)\n", |
| 142 | + "preproc = preproc.general_preprocess(\n", |
| 143 | + " variants_list=variants_list,\n", |
| 144 | + " variants_pangolin=variants_pangolin,\n", |
| 145 | + " variants_not_reported=variants_not_reported,\n", |
| 146 | + " to_drop=[\"subset\"],\n", |
| 147 | + " start_date=start_date,\n", |
| 148 | + " remove_deletions=True,\n", |
| 149 | + ")\n", |
| 150 | + "t_df_tally = preproc.df_tally\n", |
| 151 | + "# split into v41 and not v41, filter mutations and join\n", |
| 152 | + "df_tally_v41 = preproc.df_tally[preproc.df_tally.proto == 'v41'] \n", |
| 153 | + "print(df_tally_v41.shape)\n", |
| 154 | + "preproc.df_tally = preproc.df_tally[preproc.df_tally.proto != 'v41'] \n", |
| 155 | + "preproc = preproc.filter_mutations()\n", |
| 156 | + "print(preproc.df_tally.shape)\n", |
| 157 | + "\n", |
| 158 | + "preproc.df_tally = pd.concat([preproc.df_tally,df_tally_v41])\n", |
| 159 | + "print(preproc.df_tally.shape)\n", |
| 160 | + "#preproc.df_tally['']" |
| 161 | + ] |
| 162 | + }, |
| 163 | + { |
| 164 | + "cell_type": "markdown", |
| 165 | + "id": "c3690b89", |
| 166 | + "metadata": {}, |
| 167 | + "source": [ |
| 168 | + "# Look at design of mutations" |
| 169 | + ] |
| 170 | + }, |
| 171 | + { |
| 172 | + "cell_type": "code", |
| 173 | + "execution_count": null, |
| 174 | + "id": "b7a694a5", |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [ |
| 178 | + "des_matrix = preproc.df_tally[variants_list + [\"undetermined\", \"mutations\"]].drop_duplicates(\"mutations\").set_index(\"mutations\")\n", |
| 179 | + "des_matrix_mut = des_matrix[~des_matrix.index.str.startswith(\"-\")]\n", |
| 180 | + "des_matrix_wt = des_matrix[des_matrix.index.str.startswith(\"-\")]\n" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": null, |
| 186 | + "id": "a695c887", |
| 187 | + "metadata": {}, |
| 188 | + "outputs": [], |
| 189 | + "source": [ |
| 190 | + "fig, axes = plt.subplots(ncols=1, nrows=2, figsize=(plotwidth*0.5,plotwidth/8))\n", |
| 191 | + "cmap_binary = ListedColormap(['white', 'red'])\n", |
| 192 | + "# sns.heatmap(des_matrix.T, square=True, cmap=cmap_binary, cbar=False)\n", |
| 193 | + "\n", |
| 194 | + "sns.heatmap(des_matrix_mut.T, square=True, cmap=cmap_binary, cbar=False, ax=axes[0])\n", |
| 195 | + "sns.heatmap(des_matrix_wt.T, square=True, cmap=cmap_binary, cbar=False, ax=axes[1])\n", |
| 196 | + "\n", |
| 197 | + "# axes[0].tick_params(labelsize=9)\n", |
| 198 | + "\n", |
| 199 | + "\n", |
| 200 | + "plt.show()" |
| 201 | + ] |
| 202 | + }, |
| 203 | + { |
| 204 | + "cell_type": "code", |
| 205 | + "execution_count": null, |
| 206 | + "id": "3fef97d4", |
| 207 | + "metadata": {}, |
| 208 | + "outputs": [], |
| 209 | + "source": [ |
| 210 | + "# np.linalg.cond(des_matrix_mut.drop('undetermined', axis=1))\n", |
| 211 | + "print(\"condition number = {:.2f}\".format(np.linalg.cond(des_matrix)))\n" |
| 212 | + ] |
| 213 | + }, |
| 214 | + { |
| 215 | + "cell_type": "code", |
| 216 | + "execution_count": null, |
| 217 | + "id": "2770304e", |
| 218 | + "metadata": {}, |
| 219 | + "outputs": [], |
| 220 | + "source": [ |
| 221 | + "fig, axes = plt.subplots(1,3, figsize=(22,7))\n", |
| 222 | + "\n", |
| 223 | + "common_mut = des_matrix_mut.T.dot(des_matrix_mut)\n", |
| 224 | + "sns.heatmap(common_mut, square=True, cmap=\"viridis\", annot=common_mut, ax=axes[0])\n", |
| 225 | + "axes[0].set_title(\"common mutations\")\n", |
| 226 | + "\n", |
| 227 | + "corr_mut = (des_matrix_mut).corr()\n", |
| 228 | + "sns.heatmap(corr_mut, square=True, cmap=\"viridis\", annot=corr_mut, ax=axes[1], fmt=\".1g\")\n", |
| 229 | + "axes[1].set_title(\"correlation\")\n", |
| 230 | + "\n", |
| 231 | + "from sklearn.metrics.pairwise import pairwise_distances\n", |
| 232 | + "jac_sim = 1 - pairwise_distances(des_matrix_mut.T, metric = \"hamming\")\n", |
| 233 | + "jac_sim = pd.DataFrame(jac_sim, index=des_matrix_mut.columns, columns=des_matrix_mut.columns)\n", |
| 234 | + "sns.heatmap(jac_sim, square=True, cmap=\"viridis\", annot=jac_sim, ax=axes[2])\n", |
| 235 | + "axes[2].set_title(\"jaccard similarity ((A∩B)/(A∪B))\")\n", |
| 236 | + "\n", |
| 237 | + "fig.show()" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": null, |
| 243 | + "id": "12d49d6f", |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [], |
| 246 | + "source": [ |
| 247 | + "locations_1 = ['Lugano (TI)',\n", |
| 248 | + " 'Zürich (ZH)',\n", |
| 249 | + " 'Genève (GE)',\n", |
| 250 | + " 'Chur (GR)',\n", |
| 251 | + " 'Altenrhein (SG)',\n", |
| 252 | + " 'Laupen (BE)',\n", |
| 253 | + " 'Lausanne (Vidy)',\n", |
| 254 | + " 'Sion (VS)',\n", |
| 255 | + " 'Porrentruy (JU)',\n", |
| 256 | + " 'Basel (catchment area ARA Basel)']" |
| 257 | + ] |
| 258 | + }, |
| 259 | + { |
| 260 | + "cell_type": "code", |
| 261 | + "execution_count": null, |
| 262 | + "id": "1fd71359", |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [], |
| 265 | + "source": [ |
| 266 | + "all_conds_df = []\n", |
| 267 | + "for proto in preproc.df_tally.proto.unique(): \n", |
| 268 | + " \n", |
| 269 | + " for location in locations_1:\n", |
| 270 | + "\n", |
| 271 | + " t_df_tally_zh = preproc.df_tally[preproc.df_tally.location == location]\n", |
| 272 | + " t_df_tally_zh = t_df_tally_zh[(t_df_tally_zh.proto == proto) & (t_df_tally_zh[\"cov\"] >= 5)]\n", |
| 273 | + "\n", |
| 274 | + " conds = []\n", |
| 275 | + " for date in t_df_tally_zh.date.unique():\n", |
| 276 | + " des_matrix = t_df_tally_zh[\n", |
| 277 | + " (t_df_tally_zh.date == date)][variants_list + [\"undetermined\", \"mutations\"]].drop_duplicates(\"mutations\").set_index(\"mutations\")\n", |
| 278 | + " des_matrix_mut = des_matrix[~des_matrix.index.str.startswith(\"-\")]\n", |
| 279 | + " des_matrix_wt = des_matrix[des_matrix.index.str.startswith(\"-\")]\n", |
| 280 | + " \n", |
| 281 | + "# print((location, date))\n", |
| 282 | + " \n", |
| 283 | + " jac_sim = 1 - pairwise_distances(des_matrix_mut.T, metric = \"hamming\")\n", |
| 284 | + " jac_sim = pd.DataFrame(jac_sim)\n", |
| 285 | + " jac_arr = jac_sim.values\n", |
| 286 | + " np.fill_diagonal(jac_arr, np.nan)\n", |
| 287 | + " maxjac = np.nanmax(jac_arr)\n", |
| 288 | + "\n", |
| 289 | + " corr_mut = (des_matrix_mut).corr()\n", |
| 290 | + " corr_arr = corr_mut.values\n", |
| 291 | + " np.fill_diagonal(corr_arr, np.nan)\n", |
| 292 | + " maxcorr = np.nanmax(corr_arr)\n", |
| 293 | + "\n", |
| 294 | + "\n", |
| 295 | + " conds.append({\"n_mut\":des_matrix_mut.shape[0],\n", |
| 296 | + " \"cond_number\":np.linalg.cond(des_matrix),\n", |
| 297 | + " \"cond_number_omicron\":np.linalg.cond(des_matrix[[\"BA.1\", \"BA.2\", \"BA.4\", \"BA.5\"]]), \n", |
| 298 | + " \"max_jac\":maxjac, \n", |
| 299 | + " \"max_corr\":maxcorr,\n", |
| 300 | + " \"location\":location\n", |
| 301 | + " })\n", |
| 302 | + "\n", |
| 303 | + "\n", |
| 304 | + " conds_df = pd.DataFrame(\n", |
| 305 | + " conds,\n", |
| 306 | + " index=t_df_tally_zh.date.unique()\n", |
| 307 | + " )\n", |
| 308 | + " conds_df[\"proto\"] = proto\n", |
| 309 | + " all_conds_df.append(conds_df)\n", |
| 310 | + " # print(np.linalg.cond(des_matrix_mut.drop('undetermined', axis=1)))\n", |
| 311 | + "\n" |
| 312 | + ] |
| 313 | + }, |
| 314 | + { |
| 315 | + "cell_type": "code", |
| 316 | + "execution_count": null, |
| 317 | + "id": "3e6d4ec7", |
| 318 | + "metadata": {}, |
| 319 | + "outputs": [], |
| 320 | + "source": [ |
| 321 | + "all_conds_df_conc = pd.concat(all_conds_df)\n", |
| 322 | + "all_conds_df_conc = all_conds_df_conc.reset_index()\n", |
| 323 | + "all_conds_df_conc.head()" |
| 324 | + ] |
| 325 | + }, |
| 326 | + { |
| 327 | + "cell_type": "code", |
| 328 | + "execution_count": null, |
| 329 | + "id": "167aa670", |
| 330 | + "metadata": {}, |
| 331 | + "outputs": [], |
| 332 | + "source": [ |
| 333 | + "fig, axes = plt.subplots(5,2,figsize=(14,12))\n", |
| 334 | + "axes = axes.flatten()\n", |
| 335 | + "\n", |
| 336 | + "for i, location in enumerate(all_conds_df_conc.location.unique()):\n", |
| 337 | + " tmp_df = all_conds_df_conc[all_conds_df_conc.location == location]\n", |
| 338 | + " h = sns.lineplot(\n", |
| 339 | + " x=tmp_df[\"index\"],\n", |
| 340 | + " y=tmp_df[\"max_jac\"], \n", |
| 341 | + " hue = tmp_df[\"proto\"], \n", |
| 342 | + " ax=axes[i]\n", |
| 343 | + " )\n", |
| 344 | + " # h.set_ylim(top=20)\n", |
| 345 | + " h.set_xlim(left=np.datetime64(\"2021-12-01\"))\n", |
| 346 | + " axes[i].set_title(location)\n", |
| 347 | + " axes[i].set_ylabel(\"max jaccard sim\")\n", |
| 348 | + " axes[i].set_xlabel(\"\")\n", |
| 349 | + "# axes[i].set_xticks(rotation = 45) # Rotates X-Axis Ticks by 45-degrees\n", |
| 350 | + "\n", |
| 351 | + " for tick in axes[i].get_xticklabels():\n", |
| 352 | + " tick.set_rotation(45)\n", |
| 353 | + " \n", |
| 354 | + "fig.tight_layout() # Or equivalently, \"plt.tight_layout()\"\n", |
| 355 | + "\n", |
| 356 | + " " |
| 357 | + ] |
| 358 | + } |
| 359 | + ], |
| 360 | + "metadata": { |
| 361 | + "kernelspec": { |
| 362 | + "display_name": "bio1", |
| 363 | + "language": "python", |
| 364 | + "name": "bio1" |
| 365 | + }, |
| 366 | + "language_info": { |
| 367 | + "codemirror_mode": { |
| 368 | + "name": "ipython", |
| 369 | + "version": 3 |
| 370 | + }, |
| 371 | + "file_extension": ".py", |
| 372 | + "mimetype": "text/x-python", |
| 373 | + "name": "python", |
| 374 | + "nbconvert_exporter": "python", |
| 375 | + "pygments_lexer": "ipython3", |
| 376 | + "version": "3.9.16" |
| 377 | + } |
| 378 | + }, |
| 379 | + "nbformat": 4, |
| 380 | + "nbformat_minor": 5 |
| 381 | +} |
0 commit comments