Skip to content
Closed
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
57 changes: 42 additions & 15 deletions chromadb/utils/embedding_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -742,27 +742,54 @@ def __init__(
"""

self._model_name = model_name
self._model_provider = self._model_name.split('.')[0]

self._bedrock_client = session.client(
service_name="bedrock",
**kwargs
)

self._model_details = self._bedrock_client.get_foundation_model(modelIdentifier=self._model_name)['modelDetails']
assert "EMBEDDING" in self._model_details['outputModalities'], f"{self._model_name} doesn't have embedding modality output!"

self._client = session.client(
self._bedrock_runtime_client = session.client(
service_name="bedrock-runtime",
**kwargs,
)

def call_model(self, body) -> dict:
body = json.dumps(body)
response = self._bedrock_runtime_client.invoke_model(
body=body,
modelId=self._model_name,
accept="application/json",
contentType="application/json",
)
return response

def __call__(self, input: Documents) -> Embeddings:
accept = "application/json"
content_type = "application/json"
embeddings = []
for text in input:
input_body = {"inputText": text}
body = json.dumps(input_body)
response = self._client.invoke_model(
body=body,
modelId=self._model_name,
accept=accept,
contentType=content_type,
)
embedding = json.load(response.get("body")).get("embedding")
embeddings.append(embedding)
if self._model_provider == "amazon":
embeddings = []
for text in input:
input_body = {
"inputText": text
}
response = self.call_model(input_body)
embedding = json.load(response.get("body")).get("embedding")
embeddings.append(embedding)
elif self._model_provider == "cohere":
# See Amazon Bedrock User Guide > Cohere Embed models for more information
# https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-embed.html
assert len(input) <= 128, f"Input texts exceeds max size (Got: {len(input)}, Expected: <=128)"
assert all(len(text) <= 2048 for text in input), f"Input contains texts exceeding max length (2048)"
input_body = {
"texts": input,
"input_type": "search_document"
}
response = self.call_model(input_body)
embeddings = json.load(response.get("body")).get("embeddings")
else:
raise NotImplementedError(f"Model {self._model_name} is not supported!")
return embeddings


Expand Down