A package to help you manage and run coarse-grain potential optimizations using multistate iterative Boltzmann inversion.
conda install -c conda-forge msibi
git clone https://github.com/cmelab/msibi.git
cd msibi
conda env create -f environment.yml
conda activate msibi
pip install .
The MSIBI package is designed to be very object oriented. Any force optimization runs requires at least one msibi.state.State
instance, msibi.force.Force
instance and msibi.optimize.MSIBI
instance. More state and forces can be added as needed.
MSIBI uses Hoomd-Blue to run optimization simulations. It is not required that you be familiar with Hoomd to use MSIBI as the simulation script is automatically generated and ran. However, it is required that you pass in the choice of Hoomd method, Hoomd neighbor list, and Hoomd thermostat to the msibi.optimize.MSIBI
instance.
Here is a simple example using MSIBI to learn a bond-stretching force from a single state point:
# This is the context/management class for MSIBI
# Set simulation parameters, call `add_state` and `add_force` methods to store other MSIBI objects.
optimizer = MSIBI(
nlist=hoomd.md.nlist.Cell,
integrator_method=hoomd.md.methods.ConstantVolume,
thermostat=hoomd.md.methods.thermostats.MTTK,
thermostat_kwargs={"tau": 0.1},
method_kwargs={},
dt=0.0001,
gsd_period=int(1e3)
)
# Create a State instance, pass in a path to the target trajectory
stateA = State(name="A", kT=5.0, traj_file="cg_trajectory.gsd", alpha0=0.7, n_frames=100)
# For each force you want to optimize, create an instance, set optimize=True
AA_bond = Bond(type1="A", type2="A", optimize=True, nbins=80)
AA_bond.set_polynomial(x_min=0.0, x_max=0.5, x0=0.22, k2=100000, k3=0, k4=0)
AA_bond.smoothing_window = 5
AB_bond = Bond(type1="A", type2="B", optimize=True, nbins=80)
AB_bond.set_polynomial(x_min=0.0, x_max=0.5, x0=0.22, k2=100000, k3=0, k4=0)
AB_bond.smoothing_window = 5
# Add all states and forces to the optimization class (MSIBI)
optimizer.add_state(stateA)
optimizer.add_force(AA_bond)
optimizer.add_force(AB_bond)
optimizer.run_optimization(n_iterations=10, n_steps=2e5)
# See distribution comparison
AA_bond.plot_distribution_comparison(state=stateA)
AB_bond.plot_distribution_comparison(state=stateA)
AA_bond.save_potential("AA_bond.csv")
AB_bond.save_potential("AB_bond.csv")
Details of the underlying method and its validation can be found here.
If you use this package, please cite the above paper. The BibTeX reference is
@article{Moore2014,
author = "Moore, Timothy C. and Iacovella, Christopher R. and McCabe, Clare",
title = "Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion",
journal = "The Journal of Chemical Physics",
year = "2014",
volume = "140",
number = "22",
doi = "http://dx.doi.org/10.1063/1.4880555"
}