This package contains data sets used to compile vignettes and other documentation in Delphi R Packages. The goal is to avoid calls to the Delphi Epidata API, and deposit some examples here for easy offline use.
You can install the development version of {epidatasets}
like so:
# install.packages("pak")
pak::pkg_install("cmu-delphi/epidatasets")
This package contains a number of different datasets, along with the code used to generate them. See the Source Code if you want to examine the necessary API calls.
All data included here is in epi_df
format, which is a subclass of
tbl_df
which is a subclass of data.frame
. The data will print nicely
if you load the {epiprocess}
or {tibble}
packages, but these are not
required to access or inspect the data sets. For example,
library(epidatasets)
head(cases_deaths_subset)
#> geo_value time_value case_rate_7d_av death_rate_7d_av cases cases_7d_av
#> 1 ca 2020-03-01 0.0032659 0.0000000 6 1.285714
#> 2 ca 2020-03-02 0.0043545 0.0000000 4 1.714286
#> 3 ca 2020-03-03 0.0061689 0.0000000 6 2.428571
#> 4 ca 2020-03-04 0.0097976 0.0003629 11 3.857143
#> 5 ca 2020-03-05 0.0134264 0.0003629 10 5.285714
#> 6 ca 2020-03-06 0.0199582 0.0003629 18 7.857143
Compared to
library(tibble)
cases_deaths_subset
#> # A tibble: 4,026 × 6
#> geo_value time_value case_rate_7d_av death_rate_7d_av cases cases_7d_av
#> * <chr> <date> <dbl> <dbl> <dbl> <dbl>
#> 1 ca 2020-03-01 0.00327 0 6 1.29
#> 2 ca 2020-03-02 0.00435 0 4 1.71
#> 3 ca 2020-03-03 0.00617 0 6 2.43
#> 4 ca 2020-03-04 0.00980 0.000363 11 3.86
#> 5 ca 2020-03-05 0.0134 0.000363 10 5.29
#> 6 ca 2020-03-06 0.0200 0.000363 18 7.86
#> 7 ca 2020-03-07 0.0294 0.000363 26 11.6
#> 8 ca 2020-03-08 0.0341 0.000363 19 13.4
#> 9 ca 2020-03-09 0.0410 0.000726 23 16.1
#> 10 ca 2020-03-10 0.0468 0.000726 22 18.4
#> # ℹ 4,016 more rows
Compared to
library(epiprocess)
cases_deaths_subset
#> An `epi_df` object, 4,026 x 6 with metadata:
#> * geo_type = state
#> * time_type = day
#> * as_of = 2023-06-07 16:50:07.8681
#>
#> # A tibble: 4,026 × 6
#> geo_value time_value case_rate_7d_av death_rate_7d_av cases cases_7d_av
#> * <chr> <date> <dbl> <dbl> <dbl> <dbl>
#> 1 ca 2020-03-01 0.00327 0 6 1.29
#> 2 ca 2020-03-02 0.00435 0 4 1.71
#> 3 ca 2020-03-03 0.00617 0 6 2.43
#> 4 ca 2020-03-04 0.00980 0.000363 11 3.86
#> 5 ca 2020-03-05 0.0134 0.000363 10 5.29
#> 6 ca 2020-03-06 0.0200 0.000363 18 7.86
#> 7 ca 2020-03-07 0.0294 0.000363 26 11.6
#> 8 ca 2020-03-08 0.0341 0.000363 19 13.4
#> 9 ca 2020-03-09 0.0410 0.000726 23 16.1
#> 10 ca 2020-03-10 0.0468 0.000726 22 18.4
#> # ℹ 4,016 more rows
Note that an epi_df
comes with metadata (visible in that final
version), that describes the observation frequency, time_type
, the
unit of geographical measurement, geo_type
and the data vintage,
as_of
. For more on these, see the {epiprocess}
.
For the more visually inclined, that particular data set contains reported 7-day averaged cases and deaths per capita for a handful of US states.