- 深度学习斯坦福教程
- 廖雪峰python3教程
- github教程
- 莫烦机器学习教程
- 深度学习经典论文
- 斯坦福cs229代码(机器学习算法python徒手实现)
- 导师博客(机器学习深度学习专题)
- AI比赛经验+开源代码汇总
视觉!
- 了解python基础知识
- 了解高等数学、概率论、线性代数知识
- 了解基础机器学习算法:梯度下降、线性回归、逻辑回归、Softmax、SVM、PAC(先修课程斯坦福cs229 或者周志华西瓜书)
- 具有英语4级水平(深度学习学习材料、论文基本都是英文,一定要阅读英文原文,进步和提高的速度会加快!!!!)
为了让大家逐渐适应英文阅读,复习材料我们有中英两个版本,但是推荐大家读英文
- 机器学习中的数学基本知识
- 统计学习方法
大学数学课本(从故纸堆里翻出来^_^)
每周具体时间划分为4个部分:
- 1部分安排周一到周二
- 2部分安排在周四到周五
- 3部分安排在周日
- 4部分作业是本周任何时候空余时间
- 周日晚上提交作业运行截图
- 周三、周六休息^_^
训练营的作业自检系统已经正式上线啦!只需将作业发送到训练营公共邮箱即可,训练营以打卡为主,不用提交作业。以下为注意事项:
<0> 课程资料:链接 密码:zwjr
<1> 训练营代码公共邮箱:[email protected]
<2> 每周做作业,作业提交时间点:一整个Assignment代码全部完成后再提交
<3> 将每次作业压缩成zip文件,文件名为“NLP学期+学号+作业编号”,例如第二期学员:"NLP020037-01.zip"
<4> 注意不要改变作业中的《方法名》《类名》不然会检测失败!!
<5> 查询自己成绩:
知识点复习
学习组队
比赛观摩
- 了解计算机视觉综述,历史背景和课程大纲
- slides: lecture01
- 观看视频 p1, p2 和 p3
- 学习数据驱动的方法, 理解 KNN 算法,初步学习线性分类器
- 掌握本门课 python 编程的基本功
- 作业
- (热身)写一个矩阵的类,实现矩阵乘法,只能使用 python 的类(class)和列表(list)
- 完成assignment1 中的
knn.ipynb
- 作业详解:knn.md
作业 Week1::
制定自己的学习计划,开通自己的学习博客,注册自己的github
- 深入理解线性分类器的原理
- 学习损失函数以及梯度下降的相关知识
- 掌握矩阵求导的基本方法
- 根据资料,学习矩阵求导的基本技巧,看多少内容取决于个人需要
- 作业
- 简述 KNN 和线性分类器的优劣, 打卡上传知知识圈
- 完成assignment1 中
svm.ipynb
- 作业详解:svm.md
- 学习掌握深度学习的基石: 反向传播算法
- 理解神经网络的结构和原理
- slides: lecture04
- 观看视频 p10
- 深入理解反向传播算法
- 作业
- 完成 assignment1 中的
softmax.ipynb
- 完成 assignment1 中的
two_layer_net.ipynb
- 作业详解1:Softmax.md
- 作业详解2:two_layer_net.md
- 掌握 PyTorch 中的基本操作
- 学习 pytorch 的入门基础
- 了解 kaggle 比赛的流程,并完成第一次的成绩提交
-
学习深度学习的系统项目模板
-
作业
- 完成 assignment1 中的
features.ipynb
- 修改房价预测的代码,在知识圈上提交 kaggle 的成绩
- 作业详解:features.md
- 理解 CNN 中的卷积
- slides: lecture05
- 观看视频 p11, p12
- 理解 CNN 中的 pooling
- 完成 CNN 的第一个应用练习,人脸关键点检测
- 作业
- 思考一下卷积神经网络对比传统神经网络的优势在哪里?为什么更适合处理图像问题,知识圈打卡上传
- 完成 assignment2 中
FullyConnectedNets.ipynb
- 作业详解:FullyConnectedNets1.md
- 作业详解:FullyConnectedNets2.md
- 理解激活函数,权重初始化,batchnorm 对网络训练的影响
- 深入理解 BatchNormalization
- 总结回顾和理解深度学习中 normalize 的技巧
- 作业
- 完成 assignment2 中
BatchNormalization.ipynb
- 完成 assignment2 中
Dropout.ipynb
- 作业详解:BatchNormalization.md
- 作业详解:Dropout.md
- 理解更 fancy 的优化方法,更多的 normalize 以及正则化和迁移学习对网络训练的影响
- 了解第二次的 kaggle 比赛 cifar10 分类
- 全面的理解深度学习中的优化算法
- 阅读优化算法的笔记
- 作业
- 完成 assignment2 中
ConvolutionNetworks.ipynb
- 修改 cifar10 的网络结构,在知识圈上提交 kaggle 成绩
- 作业详解:ConvolutionNetworks
- 了解主流深度学习框架之间的区别与联系
- slides: lecture08
- 观看视频 p19
- 了解经典的网络结构
- slides: lecture09
- 观看视频 p20
- 理解卷积神经网络的最新进展
- 作业
- 完成 assignment2 中的
PyTorch.ipynb
- 学习模板代码, 尝试更大的网络结构完成 kaggle 比赛种子类型识别的比赛,在知识圈上提交 kaggle 成绩
- 作业详解:Pytorch.md
- 掌握 RNN 和 LSTM 的基本知识
- slides: lecture10
- 观看视频 p21
- 了解语言模型和 image caption 的基本方法
- slides: lecture10
- 观看视频 p22 和 p23
- 更深入的理解循环神经网络的内部原理
- 学习blog Understanding LSTM Networks, 中文版本
- 作业
- 完成 assignment3 中的
RNN_Captioning.ipynb
- 完成 assignment3 中的
LSTM_Captioning.ipynb
- 完成 coco 数据集上的 image caption 小项目,参考代码
- 作业详解:RNN_Captioning.md
- 学习计算机视觉中的语义分割问题
- slides: lecture11
- 观看视频 p24
- 学习计算机视觉中的目标检测问题
- slides: lecture11
- 观看视频 p25 和 p26
- 了解目标检测中的常见算法
- 学习目标检测的笔记
- 作业
- 阅读论文 Fully Convolutional Networks for Semantic Segmentation 和中文笔记
- (可选) FCN 的复现代码理解
- 理解卷积背后的原理
- slides: lecture13
- 观看视频 p27
- 学习 deep dream 和 风格迁移等有趣应用
- slides: lecture13
- 观看视频 p28
- 了解无监督学习和生成模型
- slides: lecture12
- 观看视频 p29
- 作业
- 完成 assignment3 中的
NetworkVisualization-PyTorch.ipynb
- 阅读论文 SSD: Single Shot MultiBox Detector 和一个详细的讲解
- (可选) SSD 的复现代码理解
- 掌握自动编码器和生成对抗网络的基本原理
- slides: lecture12
- 观看视频 p30 和 p31
- 了解强化学习的基本概念
- slides: lecture14
- 观看视频 p32
- 学习强化学习中的 q learning 和 actor-critic 算法
- slides: lecture14
- 观看视频 p33
- 作业
- 完成 assignment3 中的
GANs-PyTorch.ipynb
- 完成 assignment3 中的
StyleTransfer-PyTorch.ipynb