Skip to content

divishrengasamy/intelligent-toolkit-prognostic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

intelligent-toolkit-prognostic

Recently, a large number of researchers have been employing machine learning algorithms to sensor data for pre-dicting aircraft part’s remaining useful life (RUL) with promising results. An in-depth review of the literature, however, has revealed a lack of consensus regarding (a) evaluation metrics adopted; (b) the state-of-the-art methods employed for performance comparison; (c) approaches to address data overfitting; and (d) statistical tests to assess results’ significance. The existing weaknesses in methodological approaches to experimental design,results evaluation, comparison and reporting of findings can result in misleading outcomes and ultimately produce less effective predictors. Arbitrary choices of approaches for novel method’sevaluation, the potential bias that can be introduced, and the lack of systematic replication and statistical comparison of outcomes might affect the findings reported and misguide future research. For further advances in this area, there is therefore an urgent need for appropriate benchmarking methodologies to assist evaluating novel methods and to produce fair performance rankings. We introduce an open-source, extensible benchmarking library that will adress this gap in RUL research. The objectives are to assist researchers to conduct a proper, fair evaluation of their novel machine learning RUL predictive models. In addition, we intend to stimulate better practices anda more rigorous experimental design approach across the field.

Evaluation Results

FD001

Algorithms RE ME MAD AE MdAE Timeliness MAE RMSE sMAPE (%) Training Time (s) Testing Time (s)
SGD 61.8 25.2 20.5 2520.2 22.2 2477.9 25.2 30.4 0.464 40.6 0.02 0.009
Extra Trees 31.8 19.2 17.6 1924.4 11.7 1540.4 19.3 25.9 0.621 25.1 13.3 0.678
AdaBoost 41.9 21.7 19.0 2166.4 16.6 2050.9 21.8 28.4 0.530 31.1 32.7 0.023
Bagging 48.3 21.3 17.6 2214.2 18.1 1433.5 21.7 26.8 0.559 34.5 1.2 0.030
RF 31.8 19.0 18.0 1918.4 12.1 1672.5 18.9 25.7 0.609 24.7 37.0 0.413
SVR 36.5 19.7 17.5 1970.6 13.3 1877.6 19.7 25.5 0.622 29.4 20.0 0.678
GBR 31.9 19.4 19.0 1944.8 13.9 1912.7 19.4 26.7 0.586 26.0 9.2 0.011
KNN 33.1 20.7 19.1 2073.1 14.5 2030.9 20.7 27.7 0.553 26.5 0.2 0.080
MLP 30.7 5.2 17.4 1762.3 13.2 1221.4 14.7 21.6 0.720 31.2 1051 0.048
GRU 17.3 8.2 13.3 1268.5 8.5 999.5 11.8 17.7 0.610 27.7 2625 0.071
CNN2D 23.9 7.5 15.2 1550.3 8.6 957.3 14.2 21.2 0.670 19.8 1725 0.238
CNN1D 23.9 7.8 17.1 1616.6 9.9 890.2 11.4 18.0 0.780 22.6 262 0.231
LSTM 32.6 21.9 19.9 2228.9 15.2 1147.4 14.6 22.2 0.340 22.6 402 0.084

FD002

Algorithms RE ME MAD AE MdAE Timeliness MAE RMSE sMAPE (%) Training Time (s) Testing Time (s)
SGD 482.9 43.2 33.2 11199.7 39.4 63165.7 43.2 51.7 0.07 59.6 0.258 0.010
Extra Trees 88.6 20.1 19.3 5206.9 13.2 18998.1 20.1 27.4 0.73 27.9 56.1 2.78
AdaBoost 256.7 30.8 28.1 7985.0 26.6 65739.4 30.8 37.4 0.51 48.5 58.6 0.037
Bagging 275.5 30.9 28.2 8017.5 29.4 158864.3 30.9 36.6 0.53 50.4 4.42 0.082
RF 84.7 20.1 19.7 5224.6 14.1 29751.2 20.1 27.9 0.73 27.6 126.6 2.26
SVR 163.4 24.5 24.0 6352.7 20.9 17898.6 24.5 30.3 0.68 45.8 139.5 0.269
GBR 94.2 20.9 20.7 5419.7 13.5 22943.8 20.9 28.2 0.72 33.3 32.4 0.016
KNN 98.4 21.1 20.6 5481.3 15.5 31063.8 21.1 28.5 0.71 30.1 0.004 0.621
MLP 82.5 -2.5 18.0 4610.5 11.3 27030.6 18.2 25.7 0.77 45.2 1616.9 0.283
GRU 233.2 13.3 27.2 7224.2 26.2 60764.9 31.0 37.9 0.48 50.1 3948.4 1.13
CNN2D 188.8 12.8 27.9 7563.1 23.4 311192.5 29.8 39.8 0.44 43.5 127498.3 0.657
CNN1D 141.0 3.36 28.7 6686.3 21.2 3397654 28.7 41.3 0.38 44.9 507.7 0.685
LSTM 65.8 -4.8 16.3 4089.5 9.7 19640.3 17.5 25.3 0.76 31.7 9245.2 0.279

FD003

Algorithms RE ME MAD AE MdAE Timeliness MAE RMSE sMAPE (%) Training Time (s) Testing Time (s)
SGD 91.7 37.8 30.9 3780.7 35.9 2.9569e+04 37.8 45.2 -0.195 55.6 0.137 0.002
Extra Trees 41.2 29.4 25.5 2945.2 16.3 6.1131e+04 29.4 41.8 -0.020 31.3 6.763 0.044
AdaBoost 62.3 37.9 29.0 3796.3 29.6 1.7930e+05 37.9 50.2 -0.474 43.4 119.9 0.065
Bagging 83.2 40.0 23.5 4007.1 33.4 6.3764e+04 40.0 48.5 -0.376 49.4 0.494 0.013
RF 38.9 27.6 24.4 2762.6 17.4 2.1875e+04 27.6 38.9 0.114 30.2 25.9 0.041
SVR 45.3 30.9 28.0 3093.0 19.8 1.1169e+07 30.9 45.4 -0.206 34.6 28.0 0.099
GBR 38.3 26.6 24.1 2668.6 16.6 1.0130e+04 26.6 37.2 0.189 31.8 10.2 0.004
KNN 42.4 31.0 27.8 3105.9 19.4 3.4243e+06 31.0 45.5 -0.210 31.8 0.023 0.071
MLP 30.6 5.10 17.3 1762.2 13.2 1.37E+03 17.6 23.2 0.69 38.7 522.4 0.338
GRU 27.7 15.2 14.9 1738.1 10.8 6.64E+03 18.1 27.9 0.53 23.2 6046.3 0.386
CNN2D 27.0 9.20 18.0 1820.9 9.9 3.28E+04 18.2 28.2 0.53 29.7 3245.2 0.076
CNN1D 37.4 7.36 22.7 2190.0 13.5 2.63E+07 22.8 37.5 0.15 32.4 584.9 0.436
LSTM 18.9 4.21 14.9 1439.8 9.3 1.76E+03 14.9 22.5 0.69 19.2 3618.3 0.452

FD004

Algorithms RE ME MAD AE MdAE Timeliness MAE RMSE sMAPE (%) Training Time (s) Testing Time (s)
SGD 421.4 48.1 45.7 11935.7 41.0 8.6462e+08 48.1 59.8 -0.204 68.7 0.126 0.011
Extra Trees 108.1 27.6 24.2 6852.2 19.4 5.0815e+04 27.6 37.5 0.525 33.0 51.5 2.5
AdaBoost 256.3 41.3 31.2 10259.5 39.3 1.0710e+05 41.3 49.6 0.169 52.3 139.3 0.058
Bagging 357.8 42.3 33.2 10511.4 38.2 8.7822e+04 42.3 51.1 0.120 54.8 2.5 0.044
RF 102.7 27.9 25.4 6930.3 19.0 8.0127e+04 27.9 38.6 0.496 32.3 170.1 2.7
SVR 136.9 29.3 27.1 7278.3 24.8 3.4864e+04 29.3 37.2 0.532 42.8 144.9 0.351
GBR 116.5 29.2 26.1 7261.7 21.3 2.5839e+05 29.2 40.3 0.451 37.4 31.3 0.025
KNN 123.3 30.0 27.1 7455.7 22.2 9.0328e+04 30.0 40.2 0.453 36.1 0.114 0.230
MLP 116.4 14.8 22.4 6084.5 20.3 1.67E+04 25.6 33.3 0.610 40.9 1913.4 0.09
GRU 187.0 18.0 30.4 7836.6 28.5 1.20E+05 34.3 43.8 0.291 48.1 4720.2 2.45
CNN2D 166.2 7.7 28.8 7083.1 22.7 1.76E+05 29.8 39.6 0.440 43.5 2254.9 0.252
CNN1D 197.0 7.6 33.1 7808.2 29.3 2.47E+05 34.2 43.6 0.29 49.6 655.2 0.329
LSTM 263.2 29.4 29.2 8804.8 34.3 5.17E+04 38.6 47.1 0.18 52.8 3619.3 0.637

About

An Intelligent Toolkit for Benchmarking Data-Driven Prognostics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published