Provides a simple and intuitive pipe-friendly framework, coherent with the ‘tidyverse’ design philosophy, for performing basic statistical tests, including t-test, Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses.
The output of each test is automatically transformed into a tidy data frame to facilitate visualization.
Additional functions are available for reshaping, reordering, manipulating and visualizing correlation matrix. Functions are also included to facilitate the analysis of factorial experiments, including purely ‘within-Ss’ designs (repeated measures), purely ‘between-Ss’ designs, and mixed ‘within-and-between-Ss’ designs.
It’s also possible to compute several effect size metrics, including “eta squared” for ANOVA, “Cohen’s d” for t-test and “Cramer’s V” for the association between categorical variables. The package contains helper functions for identifying univariate and multivariate outliers, assessing normality and homogeneity of variances.
get_summary_stats()
: 计算一个或多个数值变量的摘要统计信息。可以处理分组数据.freq_table()
: 计算分类变量频率表.get_mode()
: 计算向量的模式,这是最常见的值.identify_outliers()
: 用箱线图方法检测单变量异常值.mahalanobis_distance()
: 计算马氏距离和标志多元离群值.shapiro_test()
andmshapiro_test()
: 单变量和多变量Shapiro-Wilk正态性检验.
t_test()
: 进行单样本、两样本和成对t检验wilcox_test()
: 进行单样本、两样本和成对的Wilcoxon测试sign_test()
: 进行符号测试, 以确定成对或匹配的观察值之间是否存在中位数差异.anova_test()
: 使用car::Anova()
进行不同类型方差分析的易用包装, 包括__单次测量方差分析__, 重复测量方差分析__以及__混合方差分析.get_anova_test_table()
: 从anova_test()
中提取方差表。 可在受试者内(重复测量)设计中自动应用球度校正.- welch_anova_test()
: 韦尔奇 (Welch) 单因素方差分析. A pipe-friendly wrapper around the base functionstats::oneway.test()
. 在方差齐性假设被违反的情况下,这是标准单因素方差分析的一种替代方法.kruskal_test()
: 进行kruskal-wallis秩和检验friedman_test()
: 提供了一个管道友好的框架来执行Friedman秩和检验,它是单向重复测量方差分析的非参数替代方法.get_comparisons()
: 创建组间可能的成对比较列表.get_pvalue_position
: 使用ggplot2自动计算绘制显著性的p值位置.
factorial_design()
: build factorial design for easily computing ANOVA using thecar::Anova()
function. This might be very useful for repeated measures ANOVA, which is hard to set up with thecar
package.anova_summary()
: Create beautiful summary tables of ANOVA test results obtained from eithercar::Anova()
orstats::aov()
. 结果包括方差分析表、广义效应大小和一些假设检验,如重复测量方差分析中的Mauchly球度检验.
tukey_hsd()
: 执行tukey事后测试。可以处理不同的输入格式:aov,lm,formula.dunn_test()
: 根据Kruskal-Wallis检验计算多对比较.games_howell_test()
: 进行博弈豪厄尔检验,当方差齐性假设被违背时,用来比较所有可能的群体差异组合.emmeans_test()
: pipe-friendly wrapper arroundemmeans
function to perform pairwise comparisons of estimated marginal means. 用于ANOVA/ANCOVA测试后的事后分析.
prop_test()
,pairwise_prop_test()
和row_wise_prop_test()
. 执行一个样本和两个样本的比例z检验. Wrappers around the R base functionprop.test()
but have the advantage of performing pairwise and row-wise z-test of two proportions, the post-hoc tests following a significant chi-square test of homogeneity for 2xc and rx2 contingency tables.fisher_test()
,pairwise_fisher_test()
androw_wise_fisher_test()
: 计数数据的Fisher精确检验. Wrappers around the R base functionfisher.test()
but have the advantage of performing pairwise and row-wise fisher tests, the post-hoc tests following a significant chi-square test of homogeneity for 2xc and rx2 contingency tables.chisq_test()
,pairwise_chisq_gof_test()
,pairwise_chisq_test_against_p()
: 进行卡方检验,包括拟合优度、同质性和独立性检验.binom_test()
,pairwise_binom_test()
,pairwise_binom_test_against_p()
: 执行精确的二项式检验和配对比较,然后进行显著的精确多项式检验. 替代卡方检验的拟合优度检验当样本.multinom_test()
: 进行精确的多项式检验. 当样本量较小时,可替代卡方检验的拟合优度检验.mcnemar_test()
: 执行McNemar卡方检验来比较配对比例. 提供多个组之间的成对比较.cochran_qtest()
: McNemar卡方检验用于比较两个以上配对比例的扩展.prop_trend_test()
: 按比例对趋势进行卡方检验。这种测试也被称为Cochran-Armitage趋势测试.
levene_test()
: 管道友好的框架,可以轻松地计算各组方差齐性的Levene检验。处理分组数据.box_m()
: 协方差矩阵齐性的Box M检验
cohens_d()
: t检验中cohen的效应大小度量.wilcox_effsize()
: Compute Wilcoxon effect size (r).eta_squared()
andpartial_eta_squared()
: Compute effect size for ANOVA.kruskal_effsize()
: Compute the effect size for Kruskal-Wallis test as the eta squared based on the H-statistic.friedman_effsize()
: Compute the effect size of Friedman test using the Kendall’s W value.cramer_v()
: Compute Cramer’s V, which measures the strength of the association between categorical variables.
Computing correlation:
cor_test()
: correlation test between two or more variables using Pearson, Spearman or Kendall methods.cor_mat()
: compute correlation matrix with p-values. Returns a data frame containing the matrix of the correlation coefficients. The output has an attribute named “pvalue”, which contains the matrix of the correlation test p-values.cor_get_pval()
: extract a correlation matrix p-values from an object of classcor_mat()
.cor_pmat()
: compute the correlation matrix, but returns only the p-values of the correlation tests.as_cor_mat()
: convert acor_test
object into a correlation matrix format.
Reshaping correlation matrix:
cor_reorder()
: reorder correlation matrix, according to the coefficients, using the hierarchical clustering method.cor_gather()
: takes a correlation matrix and collapses (or melt) it into long format data frame (paired list)cor_spread()
: spread a long correlation data frame into wide format (correlation matrix).
Subsetting correlation matrix:
cor_select()
: subset a correlation matrix by selecting variables of interest.pull_triangle()
,pull_upper_triangle()
,pull_lower_triangle()
: pull upper and lower triangular parts of a (correlation) matrix.replace_triangle()
,replace_upper_triangle()
,replace_lower_triangle()
: replace upper and lower triangular parts of a (correlation) matrix.
Visualizing correlation matrix:
cor_as_symbols()
: replaces the correlation coefficients, in a matrix, by symbols according to the value.cor_plot()
: visualize correlation matrix using base plot.cor_mark_significant()
: add significance levels to a correlation matrix.
adjust_pvalue()
: add an adjusted p-values column to a data frame containing statistical test p-valuesadd_significance()
: add a column containing the p-value significance levelp_round(), p_format(), p_mark_significant()
: rounding and formatting p-values
Extract information from statistical test results. Useful for labelling plots with test outputs.
get_pwc_label()
: Extract label from pairwise comparisons.get_test_label()
: Extract label from statistical tests.create_test_label()
: Create labels from user specified test results.
These functions are internally used in the rstatix
and in the ggpubr
R package to make it easy to program with tidyverse packages using non
standard evaluation.
df_select()
,df_arrange()
,df_group_by()
: wrappers arround dplyr functions for supporting standard and non standard evaluations.df_nest_by()
: Nest a tibble data frame using grouping specification. Supports standard and non standard evaluations.df_split_by()
: Split a data frame by groups into subsets or data panel. Very similar to the functiondf_nest_by()
. The only difference is that, it adds labels to each data subset. Labels are the combination of the grouping variable levels.df_unite()
: Unite multiple columns into one.df_unite_factors()
: Unite factor columns. First, order factors levels then merge them into one column. The output column is a factor.df_label_both()
,df_label_value()
: functions to label data frames rows by by one or multiple grouping variables.df_get_var_names()
: Returns user specified variable names. Supports standard and non standard evaluation.
doo()
: alternative to dplyr::do for doing anything. Technically it usesnest() + mutate() + map()
to apply arbitrary computation to a grouped data frame.sample_n_by()
: sample n rows by group from a tableconvert_as_factor(), set_ref_level(), reorder_levels()
: Provides pipe-friendly functions to convert simultaneously multiple variables into a factor variable.make_clean_names()
: Pipe-friendly function to make syntactically valid column names (for input data frame) or names (for input vector).counts_to_cases()
: converts a contingency table or a data frame of counts into a data frame of individual observations.
- Install the latest developmental version from GitHub as follow:
if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/rstatix")
- Or install from CRAN as follow:
install.packages("rstatix")
- Loading packages
library(rstatix)
library(ggpubr) # For easy data-visualization
# Summary statistics of some selected variables
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>%
get_summary_stats(Sepal.Length, Sepal.Width, type = "common")
#> # A tibble: 2 x 10
#> variable n min max median iqr mean sd se ci
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Sepal.Length 150 4.3 7.9 5.8 1.3 5.84 0.828 0.068 0.134
#> 2 Sepal.Width 150 2 4.4 3 0.5 3.06 0.436 0.036 0.07
# Whole data frame
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>% get_summary_stats(type = "common")
#> # A tibble: 4 x 10
#> variable n min max median iqr mean sd se ci
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Petal.Length 150 1 6.9 4.35 3.5 3.76 1.76 0.144 0.285
#> 2 Petal.Width 150 0.1 2.5 1.3 1.5 1.20 0.762 0.062 0.123
#> 3 Sepal.Length 150 4.3 7.9 5.8 1.3 5.84 0.828 0.068 0.134
#> 4 Sepal.Width 150 2 4.4 3 0.5 3.06 0.436 0.036 0.07
# Grouped data
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>%
group_by(Species) %>%
get_summary_stats(Sepal.Length, type = "mean_sd")
#> # A tibble: 3 x 5
#> Species variable n mean sd
#> <fct> <chr> <dbl> <dbl> <dbl>
#> 1 setosa Sepal.Length 50 5.01 0.352
#> 2 versicolor Sepal.Length 50 5.94 0.516
#> 3 virginica Sepal.Length 50 6.59 0.636
要比较两组的平均值,可以使用函数t_test()
(参数) 或wilcox_test()
(非参). 在下面的例子中,将说明t检验.
Preparing the demo data set:
df <- ToothGrowth
df$dose <- as.factor(df$dose)
head(df)
#> len supp dose
#> 1 4.2 VC 0.5
#> 2 11.5 VC 0.5
#> 3 7.3 VC 0.5
#> 4 5.8 VC 0.5
#> 5 6.4 VC 0.5
#> 6 10.0 VC 0.5
The one-sample test is used to compare the mean of one sample to a known
standard (or theoretical / hypothetical) mean (mu
).
df %>% t_test(len ~ 1, mu = 0)
#> # A tibble: 1 x 7
#> .y. group1 group2 n statistic df p
#> * <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 len 1 null model 60 19.1 59 6.94e-27
# One-sample test of each dose level
df %>%
group_by(dose) %>%
t_test(len ~ 1, mu = 0)
#> # A tibble: 3 x 8
#> dose .y. group1 group2 n statistic df p
#> * <fct> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 0.5 len 1 null model 20 10.5 19 2.24e- 9
#> 2 1 len 1 null model 20 20.0 19 3.22e-14
#> 3 2 len 1 null model 20 30.9 19 1.03e-17
- 创建带有p值的箱型图
# T-test
stat.test <- df %>%
t_test(len ~ supp, paired = FALSE)
stat.test
#> # A tibble: 1 x 8
#> .y. group1 group2 n1 n2 statistic df p
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl>
#> 1 len OJ VC 30 30 1.92 55.3 0.0606
# Create a box plot
p <- ggboxplot(
df, x = "supp", y = "len",
color = "supp", palette = "jco", ylim = c(0,40)
)
# Add the p-value manually
p + stat_pvalue_manual(stat.test, label = "p", y.position = 35)
- Customize labels using glue expression:
p +stat_pvalue_manual(stat.test, label = "T-test, p = {p}",
y.position = 36)
- 数据分组: compare supp levels after grouping the data by “dose”
# Statistical test
stat.test <- df %>%
group_by(dose) %>%
t_test(len ~ supp) %>%
adjust_pvalue() %>%
add_significance("p.adj")
stat.test
#> # A tibble: 3 x 11
#> dose .y. group1 group2 n1 n2 statistic df p p.adj
#> <fct> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 0.5 len OJ VC 10 10 3.17 15.0 0.00636 0.0127
#> 2 1 len OJ VC 10 10 4.03 15.4 0.00104 0.00312
#> 3 2 len OJ VC 10 10 -0.0461 14.0 0.964 0.964
#> # … with 1 more variable: p.adj.signif <chr>
# Visualization
ggboxplot(
df, x = "supp", y = "len",
color = "supp", palette = "jco", facet.by = "dose",
ylim = c(0, 40)
) +
stat_pvalue_manual(stat.test, label = "p.adj", y.position = 35)
# T-test
stat.test <- df %>%
t_test(len ~ supp, paired = TRUE)
stat.test
#> # A tibble: 1 x 8
#> .y. group1 group2 n1 n2 statistic df p
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl>
#> 1 len OJ VC 30 30 3.30 29 0.00255
# Box plot
p <- ggpaired(
df, x = "supp", y = "len", color = "supp", palette = "jco",
line.color = "gray", line.size = 0.4, ylim = c(0, 40)
)
p + stat_pvalue_manual(stat.test, label = "p", y.position = 36)
- Pairwise comparisons: if the grouping variable contains more than two categories, a pairwise comparison is automatically performed.
# Pairwise t-test
pairwise.test <- df %>% t_test(len ~ dose)
pairwise.test
#> # A tibble: 3 x 10
#> .y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 len 0.5 1 20 20 -6.48 38.0 1.27e- 7 2.54e- 7 ****
#> 2 len 0.5 2 20 20 -11.8 36.9 4.40e-14 1.32e-13 ****
#> 3 len 1 2 20 20 -4.90 37.1 1.91e- 5 1.91e- 5 ****
# Box plot
ggboxplot(df, x = "dose", y = "len")+
stat_pvalue_manual(
pairwise.test, label = "p.adj",
y.position = c(29, 35, 39)
)
- Multiple pairwise comparisons against reference group: each level is compared to the ref group
# Comparison against reference group
#::::::::::::::::::::::::::::::::::::::::
# T-test: each level is compared to the ref group
stat.test <- df %>% t_test(len ~ dose, ref.group = "0.5")
stat.test
#> # A tibble: 2 x 10
#> .y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 len 0.5 1 20 20 -6.48 38.0 1.27e- 7 1.27e- 7 ****
#> 2 len 0.5 2 20 20 -11.8 36.9 4.40e-14 8.80e-14 ****
# Box plot
ggboxplot(df, x = "dose", y = "len", ylim = c(0, 40)) +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = c(29, 35)
)
# Remove bracket
ggboxplot(df, x = "dose", y = "len", ylim = c(0, 40)) +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = c(29, 35),
remove.bracket = TRUE
)
- Multiple pairwise comparisons against all (base-mean): Comparison of each group against base-mean.
# T-test
stat.test <- df %>% t_test(len ~ dose, ref.group = "all")
stat.test
#> # A tibble: 3 x 10
#> .y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 len all 0.5 60 20 5.82 56.4 2.90e-7 8.70e-7 ****
#> 2 len all 1 60 20 -0.660 57.5 5.12e-1 5.12e-1 ns
#> 3 len all 2 60 20 -5.61 66.5 4.25e-7 8.70e-7 ****
# Box plot with horizontal mean line
ggboxplot(df, x = "dose", y = "len") +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = 35,
remove.bracket = TRUE
) +
geom_hline(yintercept = mean(df$len), linetype = 2)
# 单因素方差分析
#:::::::::::::::::::::::::::::::::::::::::
df %>% anova_test(len ~ dose)
#> ANOVA Table (type II tests)
#>
#> Effect DFn DFd F p p<.05 ges
#> 1 dose 2 57 67.416 9.53e-16 * 0.703
# 双因素方差分析
#:::::::::::::::::::::::::::::::::::::::::
df %>% anova_test(len ~ supp*dose)
#> ANOVA Table (type II tests)
#>
#> Effect DFn DFd F p p<.05 ges
#> 1 supp 1 54 15.572 2.31e-04 * 0.224
#> 2 dose 2 54 92.000 4.05e-18 * 0.773
#> 3 supp:dose 2 54 4.107 2.20e-02 * 0.132
# 双因素重复测量方差分析
#:::::::::::::::::::::::::::::::::::::::::
df$id <- rep(1:10, 6) # Add individuals id
# Use formula
# df %>% anova_test(len ~ supp*dose + Error(id/(supp*dose)))
# or use character vector
df %>% anova_test(dv = len, wid = id, within = c(supp, dose))
#> ANOVA Table (type III tests)
#>
#> $ANOVA
#> Effect DFn DFd F p p<.05 ges
#> 1 supp 1 9 34.866 2.28e-04 * 0.224
#> 2 dose 2 18 106.470 1.06e-10 * 0.773
#> 3 supp:dose 2 18 2.534 1.07e-01 0.132
#>
#> $`Mauchly's Test for Sphericity`
#> Effect W p p<.05
#> 1 dose 0.807 0.425
#> 2 supp:dose 0.934 0.761
#>
#> $`Sphericity Corrections`
#> Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
#> 1 dose 0.838 1.68, 15.09 2.79e-09 * 1.008 2.02, 18.15 1.06e-10
#> 2 supp:dose 0.938 1.88, 16.88 1.12e-01 1.176 2.35, 21.17 1.07e-01
#> p[HF]<.05
#> 1 *
#> 2
# 使用模型作为参数
#:::::::::::::::::::::::::::::::::::::::::
.my.model <- lm(yield ~ block + N*P*K, npk)
anova_test(.my.model)
#> ANOVA Table (type II tests)
#>
#> Effect DFn DFd F p p<.05 ges
#> 1 block 4 12 4.959 0.014 * 0.623
#> 2 N 1 12 12.259 0.004 * 0.505
#> 3 P 1 12 0.544 0.475 0.043
#> 4 K 1 12 6.166 0.029 * 0.339
#> 5 N:P 1 12 1.378 0.263 0.103
#> 6 N:K 1 12 2.146 0.169 0.152
#> 7 P:K 1 12 0.031 0.863 0.003
#> 8 N:P:K 0 12 NA NA <NA> NA
# 数据准备
mydata <- mtcars %>%
select(mpg, disp, hp, drat, wt, qsec)
head(mydata, 3)
#> mpg disp hp drat wt qsec
#> Mazda RX4 21.0 160 110 3.90 2.620 16.46
#> Mazda RX4 Wag 21.0 160 110 3.90 2.875 17.02
#> Datsun 710 22.8 108 93 3.85 2.320 18.61
# 两个因子的相关性分析
mydata %>% cor_test(wt, mpg, method = "pearson")
#> # A tibble: 1 x 8
#> var1 var2 cor statistic p conf.low conf.high method
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 wt mpg -0.87 -9.56 1.29e-10 -0.934 -0.744 Pearson
# Correlation of one variable against all
mydata %>% cor_test(mpg, method = "pearson")
#> # A tibble: 5 x 8
#> var1 var2 cor statistic p conf.low conf.high method
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 mpg disp -0.85 -8.75 9.38e-10 -0.923 -0.708 Pearson
#> 2 mpg hp -0.78 -6.74 1.79e- 7 -0.885 -0.586 Pearson
#> 3 mpg drat 0.68 5.10 1.78e- 5 0.436 0.832 Pearson
#> 4 mpg wt -0.87 -9.56 1.29e-10 -0.934 -0.744 Pearson
#> 5 mpg qsec 0.42 2.53 1.71e- 2 0.0820 0.670 Pearson
# Pairwise correlation test between all variables
mydata %>% cor_test(method = "pearson")
#> # A tibble: 36 x 8
#> var1 var2 cor statistic p conf.low conf.high method
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 mpg mpg 1 Inf 0. 1 1 Pearson
#> 2 mpg disp -0.85 -8.75 9.38e-10 -0.923 -0.708 Pearson
#> 3 mpg hp -0.78 -6.74 1.79e- 7 -0.885 -0.586 Pearson
#> 4 mpg drat 0.68 5.10 1.78e- 5 0.436 0.832 Pearson
#> 5 mpg wt -0.87 -9.56 1.29e-10 -0.934 -0.744 Pearson
#> 6 mpg qsec 0.42 2.53 1.71e- 2 0.0820 0.670 Pearson
#> 7 disp mpg -0.85 -8.75 9.38e-10 -0.923 -0.708 Pearson
#> 8 disp disp 1 Inf 0. 1 1 Pearson
#> 9 disp hp 0.79 7.08 7.14e- 8 0.611 0.893 Pearson
#> 10 disp drat -0.71 -5.53 5.28e- 6 -0.849 -0.481 Pearson
#> # … with 26 more rows
# Compute correlation matrix
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat <- mydata %>% cor_mat()
cor.mat
#> # A tibble: 6 x 7
#> rowname mpg disp hp drat wt qsec
#> * <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mpg 1 -0.85 -0.78 0.68 -0.87 0.42
#> 2 disp -0.85 1 0.79 -0.71 0.89 -0.43
#> 3 hp -0.78 0.79 1 -0.45 0.66 -0.71
#> 4 drat 0.68 -0.71 -0.45 1 -0.71 0.091
#> 5 wt -0.87 0.89 0.66 -0.71 1 -0.17
#> 6 qsec 0.42 -0.43 -0.71 0.091 -0.17 1
# Show the significance levels
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>% cor_get_pval()
#> # A tibble: 6 x 7
#> rowname mpg disp hp drat wt qsec
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mpg 0. 9.38e-10 0.000000179 0.0000178 1.29e- 10 0.0171
#> 2 disp 9.38e-10 0. 0.0000000714 0.00000528 1.22e- 11 0.0131
#> 3 hp 1.79e- 7 7.14e- 8 0 0.00999 4.15e- 5 0.00000577
#> 4 drat 1.78e- 5 5.28e- 6 0.00999 0 4.78e- 6 0.62
#> 5 wt 1.29e-10 1.22e-11 0.0000415 0.00000478 2.27e-236 0.339
#> 6 qsec 1.71e- 2 1.31e- 2 0.00000577 0.62 3.39e- 1 0
# Replacing correlation coefficients by symbols
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_as_symbols() %>%
pull_lower_triangle()
#> rowname mpg disp hp drat wt qsec
#> 1 mpg
#> 2 disp *
#> 3 hp * *
#> 4 drat + + .
#> 5 wt * * + +
#> 6 qsec . . +
# Mark significant correlations
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_mark_significant()
#> rowname mpg disp hp drat wt qsec
#> 1 mpg
#> 2 disp -0.85****
#> 3 hp -0.78**** 0.79****
#> 4 drat 0.68**** -0.71**** -0.45**
#> 5 wt -0.87**** 0.89**** 0.66**** -0.71****
#> 6 qsec 0.42* -0.43* -0.71**** 0.091 -0.17
# Draw correlogram using R base plot
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_reorder() %>%
pull_lower_triangle() %>%
cor_plot()
- How to Add P-Values onto Basic GGPLOTS
- How to Add Adjusted P-values to a Multi-Panel GGPlot
- How to Add P-values to GGPLOT Facets
- How to Add P-Values Generated Elsewhere to a GGPLOT
- How to Add P-Values onto a Grouped GGPLOT using the GGPUBR R Package
- How to Create Stacked Bar Plots with Error Bars and P-values
- How to Add P-Values onto Horizontal GGPLOTS
- Add P-values and Significance Levels to ggplots
- Comparing Means of Two Groups in R
- Comparing Multiple Means in R