Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Baseband FM PoC #25

Merged
merged 44 commits into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
44 commits
Select commit Hold shift + click to select a range
7eaf2ce
wip notes
drowe67 Aug 30, 2024
c02570b
draft BB FM PoC design
drowe67 Sep 4, 2024
96cc5b3
Merge branch 'main' into dr-bbfm
drowe67 Sep 4, 2024
0311ef6
BB FM Latex edits and first pass at LMR fading channel model
drowe67 Sep 5, 2024
bbcd1c8
wip refactor into radae_base.py, ctests passing
drowe67 Sep 6, 2024
0b5bb91
clean up after radae_base refactor, all ctests pass
drowe67 Sep 6, 2024
148b539
first pass trained model and inference for BBFM
drowe67 Sep 6, 2024
360ba4c
first pass at BBFM stand alone receiver and helper script
drowe67 Sep 7, 2024
2c64627
ref for FM expressions
drowe67 Sep 7, 2024
aaaa897
wip fading model with threshold effect
drowe67 Sep 10, 2024
66e949a
Latex edits, plot of FM demod SNR v CNR
drowe67 Sep 12, 2024
29b40eb
first pass BBFM model with Rayeligh fading, inference doing sensible …
drowe67 Sep 12, 2024
56a71fb
analog FM simulation to provide a comparison
drowe67 Sep 13, 2024
c27cf05
Octave sim to explore band pass BBPF channel
drowe67 Oct 3, 2024
9a3cd3d
wip Torch FIR filter demo
drowe67 Oct 12, 2024
b59d457
fir demo using conv1d working
drowe67 Oct 12, 2024
69e24b5
WIP single carrier modem
drowe67 Oct 14, 2024
a8ea02c
first pass fine timing doing sensible things
drowe67 Oct 16, 2024
11af255
update TODO
drowe67 Oct 16, 2024
d02aa38
first pass at streaming operation with fine timing and sample slip co…
drowe67 Oct 17, 2024
0aa526a
clock offset sample slip correction working, setting up test framework
drowe67 Oct 18, 2024
866bdee
BER test with noise looking good at Eb/No=4dB BER=1%
drowe67 Oct 18, 2024
3a56bc7
BBFM doco
drowe67 Oct 19, 2024
fa73834
convert to complex, phase offset in channel model
drowe67 Oct 19, 2024
43e2b11
WIP phase estimator
drowe67 Oct 19, 2024
0ea0d47
WIP phase est correction, doing sensible things for a fixed phase offset
drowe67 Oct 21, 2024
2a6e506
WIP phase est correction, problems with some angles
drowe67 Oct 24, 2024
9c197ba
wip phase est
drowe67 Oct 27, 2024
7b4ee48
phase est doing sensible things, even with small freq offsets
drowe67 Oct 30, 2024
f463532
wip normalise corr metric
drowe67 Oct 30, 2024
402a5de
mag normalisation, PSD auto scaling
drowe67 Oct 31, 2024
6c45b11
first pass at state machine and integrated rx with state machine
drowe67 Nov 1, 2024
a0f2721
refactor reporting lines, scale plots
drowe67 Nov 1, 2024
29df8fb
single carrier modem ctest
drowe67 Nov 1, 2024
2549a11
refactored bbfm utility names for consistency
drowe67 Nov 1, 2024
1c39992
single carrier tx doing sensible things with ML symbols
drowe67 Nov 1, 2024
2f1b11e
single carrier rx doing sensible things with BPSK symbols and no noise
drowe67 Nov 2, 2024
519955f
got some speech through the single carrier bbfm toolchain, loss 0.035…
drowe67 Nov 3, 2024
0035125
added some stand alone sc_tx/sc_rx tests
drowe67 Nov 5, 2024
2051de6
sorting out merge conflicts with main, bbfm_sc_internal fails occasio…
drowe67 Nov 6, 2024
2752eaf
wip fix ctests
drowe67 Nov 7, 2024
4fe0cd2
wip merge/fix ctests
drowe67 Nov 7, 2024
f3eed2b
fix state reset code
drowe67 Nov 7, 2024
dacd4e1
update BBFM.md
drowe67 Nov 7, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 83 additions & 0 deletions BBFM.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
# Radio Autoencoder - Baseband FM (BBFM)

A version of the Radio Autoencoder (RADE) designed for the baseband FM channel provided by DC coupled and passband FM radios, e.g. land mobile radio (LMR) VHF/UHF use case.

# BBFM ML encoder/decoder

1. First pass training command line:
```
python3 ./train_bbfm.py --cuda-visible-devices 0 --sequence-length 400 --batch-size 512 --epochs 100 --lr 0.003 --lr-decay-factor 0.0001 --plot_loss ~/Downloads/tts_speech_16k_speexdsp.f32 model_bbfm_01 --range_EbNo --range_EbNo_start 6 --plot_loss
```

1. Inference (runs encoder and decoder, and outputs symbols `z_hat.f32`):
```
./inference_bbfm.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav - --write_latent z_hat.f32
```
1. Stand alone decoder, outputs speech from `z_hat.f32` to sound card:
```
./rx_bbfm.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth z_hat.f32 -
```
1. Or save speech out to a wave file:
```
./rx_bbfm.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth z_hat.f32 t.wav
```

1. Plot sequence of received symbols:
```
octave:4> radae_plots; do_plots_bbfm('z_hat.f32')
```

# Fading channel simulation

HF channel sim (two path Rayleigh) is pretty close to TIA-102.CAAA-E 1.6.33 Faded Channel Simulator. The measured level crossing rate (LCR) seems to meet req (f), for v=60 km/hr, f = 450 MHz, and P=1 when measured over a 10 second sample. We've used Rs=2000 symb/s here, so x-axis of plot is 1 second in time.

![LMR 60](doc/lmr_60.png)

```
octave:39> multipath_samples("lmr60",8000, 2000, 1, 10, "h_lmr60.f32")
Generating Doppler spreading samples...
fd = 25.000
path_delay_s = 2.0000e-04
Nsecplot = 1
Pav = 1.0366
P = 1
LCR_theory = 23.457
LCR_meas = 24.400
```

# Single Carrier PSK Modem

A single carrier PSK modem "back end" that connects the ML symbols to the radio. This particular modem is written in Python, and can work with DC coupled and passband BBFM radios. It uses classical DSP, rather than ML. Unlike the HF RADE waveform which used OFDM, this modem is single carrier.

1. Run a single test with some plots, Eb/No=4dB, 100ppm sample clock offset, BER should be about 0.01:
```
python3 -c "from radae import single_carrier; s=single_carrier(); s.run_test(100,sample_clock_offset_ppm=-100,plots_en=True,EbNodB=4)"
```
1. Run a suite of tests:
```
ctest -V -R bbfm_sc
```
1. Create a file of BBFM symbols, 80 symbols every 40ms, plays expected output speech:
```
./bbfm_inference.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav - --write_latent z.f32
```
2. Sanity check of modem, BER test using digital, BPSK symbols, the symbols in z.f32 are replaced with BPSK symbols. `t.int16` is a real valued Fs=9600Hz sample file, that could be played into a FM radio.
```
cat z.f32 | python3 sc_tx.py --ber_test > t.int16
cat t.int16 | python3 sc_rx.py --ber_test --plots > /dev/null
```
3. Send the BBFM symbols over the modem, and listen to results:
```
cat z.f32 | python3 sc_tx.py > t.int16
cat t.int16 | python3 sc_rx.py > z_hat.f32
./bbfm_rx.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth z_hat.f32 -
```
4. Compare MSE of features passed through the system, first with z == z_hat, then with z passed through modem to get z_hat:
```
python3 loss.py features_in.f32 features_out.f32
loss: 0.033
python3 loss.py features_in.f32 features_rx_out.f32
loss: 0.035
```
This is a really good result, and likely inaudible. The `feature*.f32` files are produced as intermediate outputs form the `bbfm_inference.sh` and `bbfm_rx.sh` scripts.

42 changes: 40 additions & 2 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -168,13 +168,13 @@ add_test(NAME chirp_mpp
# Low SNR ota_test.sh, with chirp measurement, AWGN
add_test(NAME ota_test_awgn
COMMAND sh -c "cd ${CMAKE_SOURCE_DIR}; \
./test/ota_test_cal.sh ~/codec2-dev/build_linux/ -21 0.4")
./test/ota_test_cal.sh ${CODEC2_DEV_BUILD_DIR} -21 0.4")

# Low SNR ota_test.sh, with chirp measurement, MPP, high loss threshold as we only care about gross errors,
# like stuck in false sync
add_test(NAME ota_test_mpp
COMMAND sh -c "cd ${CMAKE_SOURCE_DIR}; \
./test/ota_test_cal.sh ~/codec2-dev/build_linux/ -24 0.4 --mpp --freq -25")
./test/ota_test_cal.sh ${CODEC2_DEV_BUILD_DIR} -24 0.4 --mpp --freq -25")


# Acquisition tests ------------------------------------------------------------------------------------
Expand Down Expand Up @@ -432,6 +432,7 @@ add_test(NAME radae_rx_aux_mpp
python3 loss.py features_in.f32 features_rx_out.f32 --loss 0.3 --clip_start 300")
set_tests_properties(radae_rx_aux_mpp PROPERTIES PASS_REGULAR_EXPRESSION "PASS")


# Embedding Python in C callable library ------------------------------------------------------------------------------------------------------

# Test Embedded version of streaming Tx, running with Python __main__
Expand Down Expand Up @@ -471,3 +472,40 @@ add_test(NAME radae_rx_embed_c
cat rx.f32 | PYTHONPATH='.' ${CMAKE_CURRENT_BINARY_DIR}/src/radae_rx > features_out.f32;
python3 loss.py features_in.f32 features_out.f32 --loss_test 0.15 --acq_time_test 0.5")
set_tests_properties(radae_rx_embed_c PROPERTIES PASS_REGULAR_EXPRESSION "PASS")


# BBFM -----------------------------------------------------------------------------------------------

# single carrier modem internal (inside single_carrier class) tests
add_test(NAME bbfm_sc_internal
COMMAND sh -c "cd ${CMAKE_SOURCE_DIR}; \
python3 -c 'from radae import single_carrier,single_carrier_tests; single_carrier_tests()'")
set_tests_properties(bbfm_sc_internal PROPERTIES PASS_REGULAR_EXPRESSION "ALL PASS")

# single carrier modem stand alone tx/rx, using BPSK symbol/BER test mode
add_test(NAME bbfm_sc_ber
COMMAND sh -c "cd ${CMAKE_SOURCE_DIR}; \
./bbfm_inference.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav /dev/null --write_latent z.f32; \
cat z.f32 | python3 sc_tx.py --ber_test > t.int16; \
cat t.int16 | python3 sc_rx.py --ber_test --target_ber 0 > /dev/null")
set_tests_properties(bbfm_sc_ber PROPERTIES PASS_REGULAR_EXPRESSION "PASS")

# single carrier modem stand alone tx/rx, using continuously valued BBFM symbols, compare loss in decoded features
add_test(NAME bbfm_sc_loss
COMMAND sh -c "cd ${CMAKE_SOURCE_DIR}; \
./bbfm_inference.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav /dev/null --write_latent z.f32; \
cat z.f32 | python3 sc_tx.py | python3 sc_rx.py > z_hat.f32; \
./bbfm_rx.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth z_hat.f32 /dev/null; \
python3 loss.py features_in.f32 features_out.f32 --features_hat2 features_rx_out.f32 --compare")
set_tests_properties(bbfm_sc_loss PROPERTIES PASS_REGULAR_EXPRESSION "PASS")

# single carrier modem stand alone tx/rx with external 300-2700Hz band pass filter and no noise, measure loss. In practice, SNR will be
# quite high, so channel distortions other than noise may dominate
add_test(NAME bbfm_sc_bpf_loss
COMMAND sh -c "cd ${CMAKE_SOURCE_DIR}; \
./bbfm_inference.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth wav/brian_g8sez.wav /dev/null --write_latent z.f32; \
cat z.f32 | python3 sc_tx.py | ${CODEC2_DEV_BUILD_DIR}/src/ch - - | python3 sc_rx.py > z_hat.f32; \
./bbfm_rx.sh model_bbfm_01/checkpoints/checkpoint_epoch_100.pth z_hat.f32 /dev/null; \
python3 loss.py features_in.f32 features_out.f32 --features_hat2 features_rx_out.f32 --compare")
set_tests_properties(bbfm_sc_bpf_loss PROPERTIES PASS_REGULAR_EXPRESSION "PASS")

7 changes: 7 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,13 @@ The RDOVAE derived Python source code is released under the two-clause BSD licen
| radae_tx.[py,sh] | streaming RADAE encoder and helper script |
| radae_rx.[py,sh] | streaming RADAE decoder and helper script |
| resource_est.py | WIP estimate CPU/memory resources |
| radae_base.py | Shared ML code between models |
| radae/bbfm.py | Baseband FM PyTorch model |
| train_bbfm.py | Training for BBFM model |
| inference_bbfm.py | Baseband FM inference |
| inference_bbfm.sh | helper script for infereence_bbfm.sh |
| fm.m | Octave analog FM mod/demod simulation |
| analog_bbfm.sh | helper script for analog FM simulation |

# Installation

Expand Down
44 changes: 44 additions & 0 deletions analog_bbfm.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
#!/bin/bash -x
#
# Analog FM simulation, for comparison to ML BBFM

CODEC2_DEV=${CODEC2_DEV:-${HOME}/codec2-dev}
OPUS=build/src
PATH=${PATH}:${OPUS}:${CODEC2_DEV}/build_linux/src
gain=6

which ch >/dev/null || { printf "\n**** Can't find ch - check CODEC2_PATH **** \n\n"; exit 1; }

source utils.sh

if [ $# -lt 3 ]; then
echo "usage (write output to file):"
echo " ./analog_bbfm.sh in.wav out.wav CNRdB"
echo "usage (play output with aplay):"
echo " ./analog_bbfm.sh in.wav - CNRdB"
exit 1
fi

if [ ! -f $1 ]; then
echo "can't find $1"
exit 1
fi

input_speech=$1
output_speech=$2
CNRdB=$3

tmp_in=$(mktemp)
tmp_out=$(mktemp)
tmp_fm=$(mktemp)

# We use hilbert clipper in ch util for speech compressor. Octave FM simulation uses 48 kHz sample rate.
# input wav -> 300-3100Hz Fs=8kHz -> ch compressor -> 300-3100Hz Fs=48kHz -> FM mod/demod
sox ${input_speech} -t .s16 -r 8000 -c 1 - sinc 0.3-3.1k | ch - - --clip 16384 --gain $gain 2>/dev/null | sox -t .s16 -r 8000 -c 1 - -t .s16 -r 48000 ${tmp_in} sinc 0.3-3.1k
echo "fm; pkg load signal; fm_mod_file('${tmp_fm}','${tmp_in}',${CNRdB}); fm_demod_file('${tmp_out}','${tmp_fm}'); quit;" | octave-cli -qf

if [ $output_speech == "-" ]; then
aplay ${tmp_out} -r 48000 -f S16_LE 2>/dev/null
elif [ $output_speech != "/dev/null" ]; then
sox -t .s16 -r 48000 -c 1 ${tmp_out} -r 8000 ${output_speech}
fi
30 changes: 30 additions & 0 deletions bbfm_bpf.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
% Octave script to explore BPF of basband symbols

function bbfm_bpf()
pkg load signal;
Fs = 8000; T = 1/Fs; Rs = 2000; M = Fs/Rs; Nsym = 6; alpha = 0.25;
rn = gen_rn_coeffs(alpha, T, Rs, Nsym, M);
bpf = fir2(100,[0 250 350 3000 3100 4000]/(Fs/2),[0.001 0.001 1 1 0.001 0.001]);

figure(1); clf;
subplot(211);
[h,w] = freqz(rn); plot(w*Fs/(2*pi), 20*log10(abs(h))); grid('minor'); ylabel('RRC');
subplot(212);
[h,w] = freqz(bpf); plot(w*Fs/(2*pi), 20*log10(abs(h))); grid; ylabel('BPF');

Nsymb = 1000;
tx_symb = 1 - 2*(rand(Nsymb,1)>0.5);
tx_pad = zeros(1,M*Nsymb);
tx_pad(1:M:end) = tx_symb;
tx = filter(rn,1,tx_pad);
tx = filter(bpf,1,tx)
rx = filter(rn,1,tx);
rx_symb = rx(1:M:end);
figure(2); clf;
subplot(211); stem(tx_symb(1:100)); ylabel('Tx symbols');
subplot(212); stem(rx_symb(1:100)); ylabel('Rx Symbols');

figure(3); clf;
plot(20*log10(abs(fft(tx)(1:length(tx)/2))))
end

142 changes: 142 additions & 0 deletions bbfm_inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
"""
/* Copyright (c) 2024 modifications for radio autoencoder project
by David Rowe */

/* Copyright (c) 2022 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""

import os
import argparse

import numpy as np
import torch

from radae import BBFM, distortion_loss

parser = argparse.ArgumentParser()

parser.add_argument('model_name', type=str, help='path to model in .pth format')
parser.add_argument('features', type=str, help='path to input feature file in .f32 format')
parser.add_argument('features_hat', type=str, help='path to output feature file in .f32 format')
parser.add_argument('--latent-dim', type=int, help="number of symbols produces by encoder, default: 80", default=80)
parser.add_argument('--cuda-visible-devices', type=str, help="set to 0 to run using GPU rather than CPU", default="")
parser.add_argument('--write_latent', type=str, default="", help='path to output file of latent vectors z[latent_dim] in .f32 format')
parser.add_argument('--CNRdB', type=float, default=100, help='FM demod input CNR in dB')
parser.add_argument('--passthru', action='store_true', help='copy features in to feature out, bypassing ML network')
parser.add_argument('--h_file', type=str, default="", help='path to rate Rs fading channel magnitude samples, rate Rs time steps by Nc=1 carriers .f32 format')
parser.add_argument('--write_CNRdB', type=str, default="", help='path to output file of CNRdB per sample after fading in .f32 format')
parser.add_argument('--loss_test', type=float, default=0.0, help='compare loss to arg, print PASS/FAIL')
args = parser.parse_args()

# set visible devices
os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_visible_devices

# device
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

latent_dim = args.latent_dim

# not exposed
nb_total_features = 36
num_features = 20
num_used_features = 20

# load model from a checkpoint file
model = BBFM(num_features, latent_dim, args.CNRdB)
checkpoint = torch.load(args.model_name, map_location='cpu')
model.load_state_dict(checkpoint['state_dict'], strict=False)
checkpoint['state_dict'] = model.state_dict()

# load features from file
feature_file = args.features
features_in = np.reshape(np.fromfile(feature_file, dtype=np.float32), (1, -1, nb_total_features))
nb_features_rounded = model.num_10ms_times_steps_rounded_to_modem_frames(features_in.shape[1])
features = features_in[:,:nb_features_rounded,:]
features = features[:, :, :num_used_features]
features = torch.tensor(features)
print(f"Processing: {nb_features_rounded} feature vectors")

# default rate Rb multipath model H=1
Rb = model.Rb
Nc = 1
num_timesteps_at_rate_Rs = model.num_timesteps_at_rate_Rs(nb_features_rounded)
H = torch.ones((1,num_timesteps_at_rate_Rs,Nc))

# user supplied rate Rs multipath model, sequence of H magnitude samples
if args.h_file:
H = np.reshape(np.fromfile(args.h_file, dtype=np.float32), (1, -1, Nc))
print(H.shape, num_timesteps_at_rate_Rs)
if H.shape[1] < num_timesteps_at_rate_Rs:
print("Multipath H file too short")
quit()
H = H[:,:num_timesteps_at_rate_Rs,:]
H = torch.tensor(H)

if __name__ == '__main__':

if args.passthru:
features_hat = features_in.flatten()
features_hat.tofile(args.features_hat)
quit()

# push model to device and run test
model.to(device)
features = features.to(device)
H = H.to(device)
output = model(features,H)

# Lets check actual SNR at output of FM demod
tx_sym = output["z_hat"].cpu().detach().numpy()
S = np.mean(np.abs(tx_sym)**2)
N = np.mean(output["sigma"].cpu().detach().numpy()**2)
SNRdB_meas = 10*np.log10(S/N)
print(f"SNRdB Measured: {SNRdB_meas:6.2f}")

features_hat = output["features_hat"][:,:,:num_used_features]
features_hat = torch.cat([features_hat, torch.zeros_like(features_hat)[:,:,:16]], dim=-1)
features_hat = features_hat.cpu().detach().numpy().flatten().astype('float32')
features_hat.tofile(args.features_hat)

loss = distortion_loss(features,output['features_hat']).cpu().detach().numpy()[0]
print(f"loss: {loss:5.3f}")
if args.loss_test > 0.0:
if loss < args.loss_test:
print("PASS")
else:
print("FAIL")

# write output symbols (latent vectors)
if len(args.write_latent):
z_hat = output["z_hat"].cpu().detach().numpy().flatten().astype('float32')
z_hat.tofile(args.write_latent)

# write CNRdB after fading
if len(args.write_CNRdB):
CNRdB = output["CNRdB"].cpu().detach().numpy().flatten().astype('float32')
CNRdB.tofile(args.write_CNRdB)

Loading