Skip to content

duongnguyen-dev/EmotiAI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EmotiAI

Emotion classification based on conversational data

Overall architecture

Prerequisite

  • Install these packages:
brew install buildpacks/tap/pack
brew install postgresql@17
brew install minio/stable/mc
brew install helm
  • Create a new python environment using conda with python version >= 3.10:
conda create -n emotiai python=3.10
conda activate emotiai
  • Install required dependencies:
pip install -r requirements.txt
pip install -r serving/requirements.txt
pip install -r kserve/requirements.txt
pip install -e .

Installation and setup

Development

  • To run everything locally on Docker desktop for the first time, just run: make up.
  • Without build: make up-without-build.
  • Down everthing: make down.
  • Access Airflow UI:
  • Access MLFlow UI:
  • Access Minio UI:
  • Access Prometheus UI:
  • Access Grafana UI:
  • Access Jaeger UI:

Cloud deployment

Setup Jenkins CI/CD on GCE using Ansible

  • Run this command make deploy_jenkins to deploy Jenkins CI/CD on GKE.

Setup others services on K8S using Terraform

  1. Run this command make deploy_k8s
  2. Go to minio service and create a bucket to store preprocessed data
kubectl exec -it "REPLACE WITH MINIO POD NAME"  -- /bin/bash
mc alias set myminio "MINIO URL" "MINIO ACCESS KEY" "MINIO SECRET KEY"
mc mb myminio/emotiai
  1. Forward-port PostgresQL and run all scripts in folder /data

About

A machine learning platform for Emotion classification problem

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published