Skip to content

dzungnguyen21/Mini_LLama

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mini_LLama

Mini_LLama is a lightweight implementation of the LLama (Large Language Model) architecture, optimized for efficient training and inference on limited hardware. This project is designed for research and experimentation in Natural Language Processing (NLP) and deep learning.

Features

  • Efficient transformer-based architecture
  • Customizable model size and training configurations
  • Support for fine-tuning on custom datasets
  • Lightweight inference for deployment on resource-constrained devices

Installation

# Clone the repository
git clone https://github.com/dzungnguyen21/Mini_LLama.git
cd Mini_LLama

# Create a virtual environment (optional but recommended)
python -m venv venv
source venv/bin/activate  # On Windows use: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

Usage

Training the Model

python train.py --config configs/train_config.json

Running Inference

python infer.py --model checkpoint/model.pth --text "Your input text here"

Configuration

Model and training parameters can be customized in the configs/ directory. Example:

{
  "model_size": "small",
  "learning_rate": 0.001,
  "batch_size": 32,
  "epochs": 10
}

Dataset Preparation

The dataset should be formatted in JSON or CSV format and placed in the data/ directory. Modify data_loader.py to preprocess your specific dataset.

Contributing

Contributions are welcome! Please follow these steps:

  1. Fork the repository.
  2. Create a new branch (feature-branch).
  3. Commit your changes.
  4. Push to your fork and create a pull request.

Contact

For questions and collaborations, feel free to reach out via GitHub issues or email.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •