Skip to content

Implementation of "DurIAN: Duration Informed Attention Network For Multimodal Synthesis".

Notifications You must be signed in to change notification settings

entn-at/DurIAN-1

Repository files navigation

DurIAN

Implementation of DurIAN: Duration Informed Attention Network For Multimodal Synthesis

Blog

论文笔记:腾讯AI lab多模态语音合成模型DurIAN

Structure

English:

  1. I use the same encoder as tacotron2
  2. I remove attention module in decoder and use average pooling to implement "predicting r frames at once"
  3. I remove position encoding and skip encoder in this implementation

Chinese:

  1. 我用了和tacotron2相同的encoder结构,但是参数更小
  2. 我去除了decoder中的attention模块,由于一步输出三帧,我对三个时间步的memory进行了相加求均值的操作,表现在代码中为average pooling,经过实验,相比与存在attention模块的decoder,这样的音质会受到很小的负面影响,但是训练速度有了极大的提高
  3. 我舍弃了position encoding和skip encoder,这对合成效果的影响很小

Sample & Pretrained model

sample here, I use waveglow as vocoder, pretrained model here, batchsize is 32, step is 180k.

Usage

training:

  1. pip install -r requirements.txt
  2. download and extract LJSpeech dataset
  3. put LJSpeech dataset in data
  4. unzip alignments.zip
  5. python3 preprocess.py
  6. CUDA_VISIBLE_DEVICES=0 python3 train.py

testing:

  1. Put Nvidia pretrained waveglow model in the waveglow/pretrained_model
  2. CUDA_VISIBLE_DEVICES=0 python3 test.py --step [step-of-checkpoint]

testing using pretrained model:

  1. put pretrained model in model_new
  2. CUDA_VISIBLE_DEVICES=0 python3 test.py --step 180000

Notes

尽管DurIAN的生成速度比不上FastSpeech,但是DurIAN生成的样本音质好于FastSpeech,并且计算量也小于FastSpeech,在实际部署中,DurIAN的生成速度已经完全满足RTF要求。

About

Implementation of "DurIAN: Duration Informed Attention Network For Multimodal Synthesis".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages