Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

gen_anchors.py with boxpoints format support #160

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
59 changes: 46 additions & 13 deletions gen_anchors.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,9 @@
import sys
import random
import argparse
import numpy as np

from voc import parse_voc_annotation
from voc import parse_voc_annotation, parse_boxpoints_annotation
import json

def IOU(ann, centroids):
Expand Down Expand Up @@ -86,26 +87,56 @@ def run_kmeans(ann_dims, anchor_num):

def _main_(argv):
config_path = args.conf
num_anchors = args.anchors
num_anchors = int(args.anchors)
xywh = not args.xy

with open(config_path) as config_buffer:
config = json.loads(config_buffer.read())

train_imgs, train_labels = parse_voc_annotation(
config['train']['train_annot_folder'],
config['train']['train_image_folder'],
config['train']['cache_name'],
config['model']['labels']
)
if xywh:
print('xywh format parser')
train_imgs, train_labels = parse_voc_annotation(
config['train']['train_annot_folder'],
config['train']['train_image_folder'],
config['train']['cache_name'],
config['model']['labels']
)
else:
print('boxpoints format parser')
train_imgs, train_labels = parse_boxpoints_annotation(
config['train']['train_annot_folder'],
config['train']['train_image_folder'],
config['train']['cache_name'],
config['model']['labels']
)

# run k_mean to find the anchors
annotation_dims = []
print(len(train_imgs))
if len(train_imgs) < 1:
print('empty train_imgs')
sys.exit()
for image in train_imgs:
print(image['filename'])
for obj in image['object']:
relative_w = (float(obj['xmax']) - float(obj['xmin']))/image['width']
relatice_h = (float(obj["ymax"]) - float(obj['ymin']))/image['height']
annotation_dims.append(tuple(map(float, (relative_w,relatice_h))))
if xywh:
for image in train_imgs:
print(image['filename'])
for obj in image['object']:
relative_w = (float(obj['xmax']) - float(obj['xmin']))/image['width']
relatice_h = (float(obj["ymax"]) - float(obj['ymin']))/image['height']
annotation_dims.append(tuple(map(float, (relative_w,relatice_h))))
else:
for image in train_imgs:
print(image['filename'])
for obj in image['object']:
# numpy.linalg.norm(a-b)
relative_w = float(np.linalg.norm(
np.array((float(obj["x1"]),float(obj["y1"])))-np.array((float(obj["x2"]),float(obj["y2"])))
))/image['width']
relatice_h = float(np.linalg.norm(
np.array((float(obj["x1"]),float(obj["y1"])))-np.array((float(obj["x3"]),float(obj["y3"])))
))/image['height']
annotation_dims.append(tuple(map(float, (relative_w,relatice_h))))

annotation_dims = np.array(annotation_dims)
centroids = run_kmeans(annotation_dims, num_anchors)
Expand All @@ -127,6 +158,8 @@ def _main_(argv):
'--anchors',
default=9,
help='number of anchors to use')

argparser.add_argument(
'-xy',
action="store_true")
args = argparser.parse_args()
_main_(args)
77 changes: 77 additions & 0 deletions voc.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,4 +64,81 @@ def parse_voc_annotation(ann_dir, img_dir, cache_name, labels=[]):
with open(cache_name, 'wb') as handle:
pickle.dump(cache, handle, protocol=pickle.HIGHEST_PROTOCOL)

return all_insts, seen_labels

def parse_boxpoints_annotation(ann_dir, img_dir, cache_name, labels=[]):
if os.path.exists(cache_name):
with open(cache_name, 'rb') as handle:
cache = pickle.load(handle)
all_insts, seen_labels = cache['all_insts'], cache['seen_labels']
else:
all_insts = []
seen_labels = {}

for ann in sorted(os.listdir(ann_dir)):
img = {'object':[]}

try:
tree = ET.parse(ann_dir + ann)
except Exception as e:
print(e)
print('Ignore this bad annotation: ' + ann_dir + ann)
continue

for elem in tree.iter():
if 'filename' in elem.tag:
img['filename'] = img_dir + elem.text
if 'width' in elem.tag:
img['width'] = int(elem.text)
if 'height' in elem.tag:
img['height'] = int(elem.text)
if 'object' in elem.tag or 'part' in elem.tag:
obj = {}

for attr in list(elem):
if 'name' in attr.tag:
obj['name'] = attr.text

if obj['name'] in seen_labels:
seen_labels[obj['name']] += 1
else:
seen_labels[obj['name']] = 1

if len(labels) > 0 and obj['name'] not in labels:
break
else:
img['object'] += [obj]

if 'bndbox' in attr.tag:
for dim in list(attr):
if 'x0' in dim.tag:
obj['x0'] = int(round(float(dim.text)))
else:
if 'x4' in dim.tag:
obj['x4'] = int(round(float(dim.text)))
if 'y0' in dim.tag:
obj['y0'] = int(round(float(dim.text)))
else:
if 'y4' in dim.tag:
obj['y4'] = int(round(float(dim.text)))
if 'x1' in dim.tag:
obj['x1'] = int(round(float(dim.text)))
if 'y1' in dim.tag:
obj['y1'] = int(round(float(dim.text)))
if 'x2' in dim.tag:
obj['x2'] = int(round(float(dim.text)))
if 'y2' in dim.tag:
obj['y2'] = int(round(float(dim.text)))
if 'x3' in dim.tag:
obj['x3'] = int(round(float(dim.text)))
if 'y3' in dim.tag:
obj['y3'] = int(round(float(dim.text)))

if len(img['object']) > 0:
all_insts += [img]

cache = {'all_insts': all_insts, 'seen_labels': seen_labels}
with open(cache_name, 'wb') as handle:
pickle.dump(cache, handle, protocol=pickle.HIGHEST_PROTOCOL)

return all_insts, seen_labels