Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enabling detection on videos #304

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ It has been tested to work with Python 2.7.13 and 3.5.3.

Grab the pretrained weights of yolo3 from https://pjreddie.com/media/files/yolov3.weights.

```python yolo3_one_file_to_detect_them_all.py -w yolo3.weights -i dog.jpg```
```python yolo3_one_file_to_detect_them_all.py -w yolo3.weights -i /path/to/image/or/video```

## Training

Expand Down
105 changes: 83 additions & 22 deletions yolo3_one_file_to_detect_them_all.py
Original file line number Diff line number Diff line change
@@ -1,13 +1,14 @@
import argparse
import os
import os, sys
import numpy as np
from keras.layers import Conv2D, Input, BatchNormalization, LeakyReLU, ZeroPadding2D, UpSampling2D
from keras.layers.merge import add, concatenate
from keras.models import Model
import struct
import cv2
from tqdm import tqdm

np.set_printoptions(threshold=np.nan)
np.set_printoptions(threshold=sys.maxsize)
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"

Expand Down Expand Up @@ -380,7 +381,7 @@ def draw_boxes(image, boxes, labels, obj_thresh):

def _main_(args):
weights_path = args.weights
image_path = args.image
input_path = args.image

# set some parameters
net_h, net_w = 416, 416
Expand All @@ -404,30 +405,90 @@ def _main_(args):
weight_reader = WeightReader(weights_path)
weight_reader.load_weights(yolov3)

# preprocess the image
image = cv2.imread(image_path)
image_h, image_w, _ = image.shape
new_image = preprocess_input(image, net_h, net_w)
if input_path[-4:] == '.mp4': # do detection on a video
video_out = input_path[:-4] + '_detected' + input_path[-4:]
video_reader = cv2.VideoCapture(input_path)

# run the prediction
yolos = yolov3.predict(new_image)
boxes = []
nb_frames = int(video_reader.get(cv2.CAP_PROP_FRAME_COUNT))
frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))

video_writer = cv2.VideoWriter(video_out,
cv2.VideoWriter_fourcc(*'MPEG'),
50.0,
(frame_w, frame_h))
# the main loop
batch_size = 1
images = []
start_point = 0 # %
show_window = False
for i in tqdm(range(nb_frames)):
_, image = video_reader.read()

if (float(i + 1) / nb_frames) > start_point / 100.:
images += [image]

if (i % batch_size == 0) or (i == (nb_frames - 1) and len(images) > 0):
for i in range(len(images)):
# preprocess the image
image_h, image_w, _ = images[i].shape
new_image = preprocess_input(images[i], net_h, net_w)

# run the prediction
yolos = yolov3.predict(new_image)
boxes = []

for j in range(len(yolos)):
# decode the output of the network
boxes += decode_netout(yolos[j][0], anchors[j], obj_thresh, nms_thresh, net_h, net_w)

# correct the sizes of the bounding boxes
correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w)

# suppress non-maximal boxes
do_nms(boxes, nms_thresh)

# draw bounding boxes on the image using labels
draw_boxes(images[i], boxes, labels, obj_thresh)

# show the video with detection bounding boxes
if show_window: cv2.imshow('video with bboxes', images[i])

# write result to the output video
video_writer.write(images[i])

images = []

if show_window and cv2.waitKey(1) == 27: break # esc to quit

if show_window: cv2.destroyAllWindows()
video_reader.release()
video_writer.release()
else:
# preprocess the image
image = cv2.imread(input_path)
image_h, image_w, _ = image.shape
new_image = preprocess_input(image, net_h, net_w)

# run the prediction
yolos = yolov3.predict(new_image)
boxes = []

for i in range(len(yolos)):
# decode the output of the network
boxes += decode_netout(yolos[i][0], anchors[i], obj_thresh, nms_thresh, net_h, net_w)

for i in range(len(yolos)):
# decode the output of the network
boxes += decode_netout(yolos[i][0], anchors[i], obj_thresh, nms_thresh, net_h, net_w)
# correct the sizes of the bounding boxes
correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w)

# correct the sizes of the bounding boxes
correct_yolo_boxes(boxes, image_h, image_w, net_h, net_w)
# suppress non-maximal boxes
do_nms(boxes, nms_thresh)

# suppress non-maximal boxes
do_nms(boxes, nms_thresh)
# draw bounding boxes on the image using labels
draw_boxes(image, boxes, labels, obj_thresh)

# draw bounding boxes on the image using labels
draw_boxes(image, boxes, labels, obj_thresh)

# write the image with bounding boxes to file
cv2.imwrite(image_path[:-4] + '_detected' + image_path[-4:], (image).astype('uint8'))
# write the image with bounding boxes to file
cv2.imwrite(input_path[:-4] + '_detected' + input_path[-4:], (image).astype('uint8'))

if __name__ == '__main__':
args = argparser.parse_args()
Expand Down