Skip to content

Add rabitq bench to source control #4307

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
337 changes: 337 additions & 0 deletions benchs/bench_rabitq.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,337 @@
#!/usr/bin/env -S grimaldi --kernel faiss
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# fmt: off
# flake8: noqa

# NOTEBOOK_NUMBER: N7030784 (685760243832285)

""":py"""
import timeit
from collections import defaultdict

import faiss
from faiss.contrib.datasets import SyntheticDataset

""":py"""
ds: SyntheticDataset = SyntheticDataset(256, 1_000_000, 1_000_000, 10_000)
nlist: int = 1000
qb: int = 8
# This will contain <"index name", ([recalls],[speeds],[labels (the k)])>
recall_speed_data = defaultdict(lambda: [[], [], []])
# This will contain <"index name", ([recalls],[memory for this index])>
recall_memory_data = defaultdict(lambda: [[], []])

""":py"""
# Helpers


def trials(index, xq, k):
trials = 10
result = timeit.timeit(
stmt="index.search(xq, k)",
number=trials,
globals={"index": index, "xq": xq, "k": k},
)
return result / trials * 1000.0 # ms


def trials_ivf(index, xq, k, params=None):
trials = 10
result = timeit.timeit(
stmt="search_with_parameters(index, xq, k, params)",
number=trials,
globals={
"search_with_parameters": faiss.search_with_parameters,
"index": index,
"xq": xq,
"k": k,
"params": params,
},
)
return result / trials * 1000.0 # ms


def compute_recall(ground_truth_I, predicted_I):
n_queries, k = ground_truth_I.shape
intersection = faiss.eval_intersection(ground_truth_I, predicted_I)
recall = intersection / (n_queries * k)
return recall


def create_index(ds, factory_string):
index = faiss.index_factory(ds.d, factory_string)
index.train(ds.get_train())
index.add(ds.get_database())
return index


# pyre-ignore
def handle_index(prefix, index, ds, mem, k):
gt_I = ds.get_groundtruth(k)
_, I_res = index.search(ds.get_queries(), k)
avg_speed = trials(index, ds.get_queries(), k)
recall = compute_recall(gt_I, I_res)
print(
f"{prefix} recall@{k}: {recall}. Average speed: {avg_speed:.1f}ms. Memory: {mem/1e6:.3f}MB"
)
recall_speed_data[prefix][0].append(recall)
recall_speed_data[prefix][1].append(avg_speed)
recall_speed_data[prefix][2].append(f"k={k}")
recall_memory_data[prefix][0].append(recall)
recall_memory_data[prefix][1].append(mem)


# pyre-ignore
def handle_ivf_index(prefix, index, ds, mem, k, params):
gt_I = ds.get_groundtruth(k)
for nprobe in 4, 16, 32:
params.nprobe = nprobe
_, I_res = faiss.search_with_parameters(index, ds.get_queries(), k, params)
avg_speed = trials_ivf(index, ds.get_queries(), k, params)
recall = compute_recall(gt_I, I_res)
print(
f"{prefix} nprobe={nprobe}: recall@{k}: {recall}. Average speed: {avg_speed:.1f}ms. Memory: {mem/1e6:.3f}MB"
)
recall_speed_data[prefix][0].append(recall)
recall_speed_data[prefix][1].append(avg_speed)
recall_speed_data[prefix][2].append(f"k={k}, nprobe={nprobe}")
recall_memory_data[prefix][0].append(recall)
recall_memory_data[prefix][1].append(mem)


# pyre-ignore
def vary_k_nprobe_measuring_recall_and_memory(prefix, index, ds, mem):
classname = type(index).__name__
for k in 1, 10, 100:
if classname in [
"IndexRaBitQ",
"IndexPQFastScan",
"IndexHNSWFlat",
"IndexScalarQuantizer",
]:
handle_index(prefix, index, ds, mem, k)
elif classname in [
"IndexIVFRaBitQ",
"IndexPreTransform",
"IndexIVFPQFastScan",
"IndexIVFScalarQuantizer",
]:
if (
classname == "IndexIVFPQFastScan"
or classname == "IndexIVFScalarQuantizer"
):
params = faiss.IVFSearchParameters()
else:
params = faiss.IVFRaBitQSearchParameters()
params.qb = qb
handle_ivf_index(prefix, index, ds, mem, k, params)

""":py '605360559215064'"""
# IndexRaBitQ

fac_s = "RaBitQ"
non_ivf_rbq = faiss.index_factory(ds.d, fac_s)
non_ivf_rbq.qb = qb
non_ivf_rbq.train(ds.get_train())
non_ivf_rbq.add(ds.get_database())
mem = non_ivf_rbq.code_size * non_ivf_rbq.ntotal

vary_k_nprobe_measuring_recall_and_memory(fac_s, non_ivf_rbq, ds, mem)

del non_ivf_rbq

""":py '3928150077498381'"""
# IndexIVFRaBitQ with no random rotation

fac_s = f"IVF{nlist},RaBitQ"
rbq1 = faiss.index_factory(ds.d, fac_s)
rbq1.qb = qb
rbq1.train(ds.get_train())
rbq1.add(ds.get_database())
mem = rbq1.code_size * rbq1.ntotal

vary_k_nprobe_measuring_recall_and_memory(fac_s, rbq1, ds, mem)

del rbq1

""":py '1484145352968190'"""
# IndexIVFRaBitQ with random rotation

fac_s = f"IVF{nlist},RaBitQ"
rbq2 = faiss.index_factory(ds.d, fac_s)
rbq2.qb = qb
rrot = faiss.RandomRotationMatrix(ds.d, ds.d)
rrot.init(123)
index_pt = faiss.IndexPreTransform(rrot, rbq2)
index_pt.train(ds.get_train())
index_pt.add(ds.get_database())
mem = rbq2.code_size * index_pt.ntotal

vary_k_nprobe_measuring_recall_and_memory(fac_s + "_RROT", index_pt, ds, mem)

del index_pt

""":py '644702398382829'"""
# IndexScalarQuantizer

for M in [4, 6, 8]:
fac_s = f"SQ{M}"
sq = create_index(ds, fac_s)
mem = sq.code_size * sq.ntotal
vary_k_nprobe_measuring_recall_and_memory("Index" + fac_s, sq, ds, mem)

""":py '1347502839702520'"""
# IndexIVFScalarQuantizer

for M in [4, 6]: # 8 seems to have no recall improvement in this dataset.
fac_s = f"IVF{nlist},SQ{M}"
sq = create_index(ds, fac_s)
mem = sq.code_size * sq.ntotal
vary_k_nprobe_measuring_recall_and_memory(fac_s, sq, ds, mem)

""":py '1350039419637535'"""
# PQFS

for m in [32, 64, 128]:
fac_s = f"PQ{m}x4fs"
pqfs = create_index(ds, fac_s)
mem = pqfs.code_size * pqfs.ntotal
vary_k_nprobe_measuring_recall_and_memory(fac_s, pqfs, ds, mem)
del pqfs

""":py '2549074352105737'"""
# IVFPQFS

for m in [32, 64, 128]:
fac_s = f"IVF{nlist},PQ{m}x4fs"
ivf_pqfs = create_index(ds, fac_s)
mem = ivf_pqfs.code_size * ivf_pqfs.ntotal
vary_k_nprobe_measuring_recall_and_memory(fac_s, ivf_pqfs, ds, mem)
del ivf_pqfs

""":py '3933359133572530'"""
# HNSW

for m in [8, 16, 32]:
fac_s = f"HNSW{m}"
index = create_index(ds, fac_s)
storage = faiss.downcast_index(index.storage)
mem = (
storage.ntotal * storage.code_size
+ index.hnsw.neighbors.size() * 4
+ index.hnsw.offsets.size() * 8
)
vary_k_nprobe_measuring_recall_and_memory(fac_s, index, ds, mem)
del index

""":py"""
import matplotlib.pyplot as plt
from adjustText import adjust_text


# Specific colors that stand out against each other for this many data points.
colors = [
"black",
"darkgray",
"darkred",
"red",
"orange",
"wheat",
"olive",
"yellow",
"lime",
"teal",
"cyan",
"skyblue",
"royalblue",
"navy",
"darkviolet",
"fuchsia",
"deeppink",
"pink",
]

""":py '1023372579245229'"""
slowest_speed = 0.0
for key, vals in recall_speed_data.items():
for speed in vals[1]:
slowest_speed = max(slowest_speed, speed)

plt.axis([0, 1.0, 0, slowest_speed + 100.0]) # [xmin, xmax, ymin, ymax]
for i, (key, vals) in enumerate(recall_speed_data.items()):
recalls = vals[0]
speeds = vals[1]
plt.plot(
recalls,
speeds,
linestyle=" ",
marker="o",
color=colors[i],
label=key,
markersize=15,
)
# Adding k and nprobe labels makes the diagram very busy, but can be enabled by uncommenting the following lines:
# ks = vals[2]
# texts = []
# for i, (x_val, y_val) in enumerate(zip(recalls, speeds)):
# texts.append(plt.text(x_val, y_val, ks[i]))
# # Adjust text labels
# adjust_text(
# texts,
# arrowprops=dict(arrowstyle="-", color="black", lw=0.5),
# force_text=(0.1, 0.25),
# force_points=(0.2, 0.5),
# only_move={"points": "xy"},
# )

plt.title("Recall vs Speed")
plt.xlabel("Recall")
plt.ylabel("Speed")
plt.legend()
plt.show()

""":py '1354989919068149'"""
largest_mem = 0.0
for key, vals in recall_memory_data.items():
for mem in vals[1]:
largest_mem = max(largest_mem, mem)

plt.ylim(1e6, 1e10)
plt.yscale("log", base=10)

for i, (key, vals) in enumerate(recall_memory_data.items()):
recalls = vals[0]
mems = vals[1]
plt.plot(
recalls,
mems,
linestyle=" ",
marker="o",
color=colors[i],
label=key,
markersize=10,
)

texts = []
if i == 0:
texts.append(plt.text(recalls[0], mems[0], "RaBitQ"))
texts.append(plt.text(recalls[1], mems[1], "RaBitQ"))
adjust_text(
texts,
arrowprops=dict(arrowstyle="-", color="black", lw=0.5),
force_text=(0.5, 0.25),
force_points=(1.0, 1.5),
expand_points=(5.0, 10.0),
)

plt.title("Recall vs Memory")
plt.xlabel("Recall")
plt.ylabel("Memory")
plt.legend()
plt.show()

""":py"""
Loading