Skip to content

Savaşan İnsansız Hava Aracı için Hedef Takip Sistemi

Notifications You must be signed in to change notification settings

fatmanur-ceylan/combat-drone

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Combat-drone

Savaşan İnsansız Hava Aracı için Hedef Takip Sistemi

1. Veri Seti Hazırlama

Hazır veri setleri yetersiz olduğundan youtube videolarından veri seti toplayacağız. Açık kaynak İnsansız Sabit Kanat Arac veri seti bulmak zor olduğundan dolayı kendii veri setimizi toplayıp bunu halka açık halinden paylaşmayı hedeflemekteyiz. Bu hedefi başka repoda gerçekleştirmekteyim.

  • Youtube videosu indirmek için:https://tr.savefrom.net/1-how-to-download-youtube-video.html
  • Video üzerindeki kare görüntüleri indirmek için:split-videos-to-frames.py "split-videos-to-frames.py" dosyasını düzeneleyip çalıştıracağız.
  • Veri setindeki resimleri belli bir boyuta indirmek için: image_resize.py dosyasını düzeneleyip çalıştıracağız.

Yüksek doğruluk oranı elde etmek için, yüksek kaliteli resimler bulmalıyız. Bunun için HD kalitede çekilmiş İnsansız Hava Araçlar videolarını bulmalıyız. Bunu daha iyi anlamak için bir akademik makaleyi okumanızı tavsiye ederim.

Toplam 20 video üzerinden esimler indirip etiketleme yapacağım. Veri etiketleme için makesense.ai sitesini kullanacağız. Veri setlerinin boyutu fazla olduğundan dolayı örnek olması açısından 50 etiketli resim paylaşacağım.

Örnek Veri Etiketleme:

Yolov4-tiny ile Eğitim

1000 etiketli veri setini yolov4-tiny modelindeki test sonuçları:

Sonuç ve Değerlendirme

Sonuç ve Değerlendirme: 07.03.2021 tarihinde yayınlanacaktır.

Proje halen devam etmektedir.

Yapılacaklar Listesi:

  • Yolov4, Yolov4x-Mish, Yolov4-Csp ve Yolov5-Pytorch ile Eğitim ve Test.
  • Yolov4, Yolov4x-Mish, Yolov4-Csp ve Yolov5-Pytorch modellerinin Karşılaştırılması.
  • Test ettiği resimlerden kordinat ve nesne bilgisini .txt dosyasına yazdırma.
  • Opencv Kullanarak Yolo Modellerini Test.
  • Yolo modelini TF2-YOLO ve Yolov4-TensorRT modeline çevirme.
  • Projeyi Script Haline Getirme.

Kaynaklar:

[1] : https://github.com/kadirnar/uav-datasets [2] : https://arxiv.org/pdf/1604.04004.pdf

About

Savaşan İnsansız Hava Aracı için Hedef Takip Sistemi

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%