python 3.6
Requiements:
- gpytorch==1.6.0
- keras==2.6.0
- Keras-Preprocessing==1.1.2
- matplotlib==2.2.5
- numpy==1.17.3
- optuna==3.0.6
- pandas==1.1.5
- plotly==5.15.0
- pyparsing==2.4.7
- scikit-learn==0.24.2
- scipy==1.3.3
- seaborn==0.11.2
- tensorboard==2.10.1
- torch==1.10.2
The Hyperparameter optimization (HPO) trial can be started by runing the “experiment.py” file. The change of configuration for this file is
-
If run locally:
hpo = input("Enter HPO Study type: ") # GP, DGP or DSPP pruner_type = input("Enter Pruner Type: ") # Optuna Pruner Type, either "None" or "HB" for Hyperband time_tolerance = int(input("Enter time tolerance: ")) # Maximum number of seconds before cancel a HPO trial
Enter HPO Study type: DGP Enter Pruner Type: None Enter time tolerance: 6000
-
If run on slurm: please change the configurations in the “experiment.py” file.
The training data and test data extraction process can be done by the “file_read.py” file,
The model training process can be started by runing the “train_GP.py”, “train_DGP.py” and “train_DSPP.py” file.
The trained model state file (*.pth file) and all the model parameters in *.txt file will be saved after training process is finished.
The model result visulization can be shown by runing the “plot_GP_result_test.py”, “plot_DGP_result_test.py” and “plot_DSPP_result_test.py” file.