-
Notifications
You must be signed in to change notification settings - Fork 180
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feature: Triton implementation of
silu_and_mul
(#716)
- Loading branch information
Showing
3 changed files
with
148 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,57 @@ | ||
from collections.abc import Mapping | ||
from typing import Optional | ||
|
||
import torch | ||
import triton # type: ignore[import] | ||
|
||
from flashinfer.triton.kernels.activation import silu_and_mul_kernel | ||
|
||
|
||
def silu_and_mul( | ||
x: torch.Tensor, | ||
x_scale: Optional[torch.Tensor] = None, | ||
o_scale: Optional[torch.Tensor] = None, | ||
dtype: Optional[torch.dtype] = None, | ||
) -> torch.Tensor: | ||
"""Sigmoid Linear Unit and Multiplication | ||
Computes `silu(x[:,:d]) * x[:, d:]`, where `d = x.shape[-1] // 2. | ||
If the scale of `x` is `x_scale`, the scale applied to the output | ||
is the square of that, as the sigmoid function ranges in (0, 1). | ||
Args: | ||
x: The input tensor, of shape `(b, 2 * d)`. | ||
x_scale: An optional scale which was applied to `x`. | ||
o_scale: The scale to apply to the output. | ||
dtype: The desired output dtype. | ||
Returns: | ||
The output activation, of shape `(b, d)`. | ||
""" | ||
|
||
b, n = x.shape | ||
|
||
assert n % 2 == 0 | ||
d = n // 2 | ||
|
||
o_dtype = dtype or x.dtype | ||
o = torch.empty((b, d), dtype=o_dtype, device=x.device) | ||
|
||
def grid(meta: Mapping[str, int]) -> tuple[int, int]: | ||
return (b, triton.cdiv(d, meta["BLOCK_SIZE"])) | ||
|
||
silu_and_mul_kernel[grid]( | ||
o_ptr=o, | ||
o_stride=o.stride(0), | ||
o_scale_ptr=o_scale, | ||
x_ptr=x, | ||
x_stride=x.stride(0), | ||
x_scale_ptr=x_scale, | ||
d=d, | ||
BLOCK_SIZE=1024, | ||
HAS_X_SCALE=x_scale is not None, | ||
HAS_O_SCALE=o_scale is not None, | ||
) | ||
|
||
return o |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
import triton # type: ignore[import] | ||
import triton.language as tl # type: ignore[import] | ||
|
||
from flashinfer.triton.kernels.quant import scale_and_clamp | ||
|
||
|
||
@triton.jit | ||
def silu_and_mul_kernel( | ||
o_ptr, | ||
o_stride, | ||
o_scale_ptr, | ||
x_ptr, | ||
x_stride, | ||
x_scale_ptr, | ||
d, | ||
BLOCK_SIZE: tl.constexpr, | ||
HAS_X_SCALE: tl.constexpr, | ||
HAS_O_SCALE: tl.constexpr, | ||
) -> None: | ||
"""Sigmoid Linear Unit and Multiplication Kernel | ||
Args: | ||
o_ptr: Pointer to the 2D output tensor. | ||
o_stride: Output tensor stride. | ||
o_scale_ptr: The optional, known scale of the output activations. | ||
x_ptr: Pointer to the 2D input tensor. | ||
x_stride: Input tensor stride. | ||
x_scale_ptr: The optional, known scale of the input tensor. | ||
d: The number of elements along the second dimension. | ||
BLOCK_SIZE: Tunable block size to process in each kernel. | ||
Operating on a 2D grid, computes the following: | ||
``` | ||
out[i, j] = sigmoid(x[i, j]) * x[i, j] * x[i, j + d] | ||
``` | ||
If scales are provided, the input and output tensors are scaled. | ||
""" | ||
|
||
i = tl.program_id(axis=0).to(tl.int64) | ||
j = tl.program_id(axis=1) | ||
|
||
o_row_ptr = o_ptr + o_stride * i | ||
x_row_ptr = x_ptr + x_stride * i | ||
|
||
offsets = j * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE) | ||
mask = offsets < d | ||
|
||
a = tl.load(x_row_ptr + offsets, mask=mask).to(tl.float32) | ||
b = tl.load(x_row_ptr + offsets + d, mask=mask).to(tl.float32) | ||
|
||
if HAS_X_SCALE: | ||
x_scale = tl.load(x_scale_ptr) | ||
a *= x_scale | ||
b *= x_scale | ||
|
||
result = tl.sigmoid(a) * a * b | ||
|
||
if HAS_O_SCALE: | ||
o_scale = tl.load(o_scale_ptr) | ||
result = scale_and_clamp(result, o_scale, o_ptr.dtype.element_ty) | ||
|
||
tl.store(o_row_ptr + offsets, result, mask=mask) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
import triton # type: ignore[import] | ||
import triton.language as tl # type: ignore[import] | ||
|
||
|
||
@triton.jit | ||
def scale_and_clamp(x, scale, dtype): | ||
"""Scales a value and clamps it to the range of the target dtype. | ||
This function hard-wires the upper/lower bounds in order to be | ||
compatible with both `torch.compile` and `triton.jit`. | ||
""" | ||
if dtype == tl.float8e4nv: | ||
clamp_min = -448.0 | ||
clamp_max = 448.0 | ||
elif dtype == tl.float8e5: | ||
clamp_min = -57344.0 | ||
clamp_max = 57344.0 | ||
elif dtype == tl.float16: | ||
clamp_min = -65504.0 | ||
clamp_max = 65504.0 | ||
elif dtype == tl.bfloat16: | ||
clamp_min = -3.3895313892515355e38 | ||
clamp_max = 3.3895313892515355e38 | ||
else: | ||
tl.static_assert(False, f"Unsupported dtype: {dtype}") | ||
|
||
return tl.clamp(x.to(tl.float32) * scale, clamp_min, clamp_max).to(dtype) |