Skip to content

Latest commit

 

History

History

segmentation

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Semantic segmentation

The sample training script was made to train object detection models on PASCAL VOC 2012.

Getting started

Ensure that you have holocron installed

git clone https://github.com/frgfm/Holocron.git
pip install -e "Holocron/.[training]"

No need to download the dataset, torchvision will handle this for you! From there, you can run your training with the following command

python train.py VOC2012 --arch unet3p -b 4 -j 16 --opt radam --lr 1e-5 --sched onecycle --epochs 20

Personal leaderboard

PASCAL VOC 2012

Performances are evaluated on the validation set of the dataset using the mean IoU metric.

Size (px) Epochs args mean IoU # Runs
256 200 VOC2012 --arch unet_rexnet13 -b 16 --loss label_smoothing --opt adamp --device 0 --lr 2e-3 --epochs 200 32.14 1
256 20 VOC2012 --arch unet3p -b 4 -j 16 --opt radam --lr 1e-5 --sched onecycle --epochs 20 14.17 1

Model zoo

Model mean IoU Param # MACs Interpolation Image size
unet 18.11M bilinear 256
unetp 28.28M bilinear 256
unetpp 29.54M bilinear 256
unet3p 26.93M bilinear 256
unet_tvvgg11 32.17M bilinear 256
unet_tvresnet34 36.25M bilinear 256
unet_rexnet13 32.14 9.34M bilinear 256