Lets start with ML code using gramex,
- Write FunctionHandler in
gramex.yaml
to call python code
scipy-app-modelhandler:
pattern: /$YAMLURL/train_method
handler: FunctionHandler
kwargs:
function: modelhandler_demo.train_method
xsrf_cookies: false
headers:
Content-Type: text/plain
Cache-Control: no-store
#FileHandler to serve generated `chart.png`
scipy-app-chart:
pattern: /$YAMLURL/chart.png
handler: FileHandler
kwargs:
path: $YAMLPATH/chart.png
headers:
Cache-Control: no-store
- Write Python code to
application_name.py
file and import your ml libraries
import json
from pydoc import locate
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from gramex import cache
from scipy.stats import norm
from sklearn import naive_bayes as nb
from sklearn.linear_model.base import LinearClassifierMixin
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier, plot_tree
from tornado.template import Template
def train_method(handler):
"""Training, testing method."""
url = handler.get_argument('url', default='upload_data/data.csv')
df = cache.open(url)
# read variables adjusted in the UI
clf = locate(handler.get_argument('model_class'))()
test_size = float(handler.get_argument('testSize')) / 100
target_col = handler.get_argument('output')
dfy = df[target_col]
dfx = df[[c for c in df if c != target_col]]
x, y = dfx.values, dfy.values
# train, test split, fit, determine accuracy
xtrain, xtest, ytrain, ytest = train_test_split(
x, y, test_size=test_size, shuffle=True, stratify=y)
clf.fit(xtrain, ytrain)
score = clf.score(xtest, ytest)
# write back the output to report.html, custom tornado template
with open('report.html', 'r', encoding='utf8') as fout:
tmpl = Template(fout.read())
viz = _make_chart(clf, dfx)
return tmpl.generate(score=score, model=clf, spec=viz)
- generate interactive and static charts
def _make_gnb_chart(clf, dfx):
plt.close('all')
n_classes, n_feats = clf.theta_.shape
std = np.sqrt(clf.sigma_)
fig, ax = plt.subplots(nrows=n_classes, ncols=n_feats, sharex=True)
for i in range(n_classes):
for j in range(n_feats):
loc = clf.theta_[i, j]
scale = std[i, j]
p = norm(loc, scale)
x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), 100) # noqa: E912
y = p.pdf(x)
ax[i, j].plot(x, y)
ax[i, j].fill_between(x, y, where=y > 0)
if i < (n_classes - 1):
ax[i, j].tick_params(axis='x', bottom=False)
for i, _ax in enumerate(ax[:, -1]):
_ax.set_ylabel(clf.classes_[i])
_ax.yaxis.set_label_position('right')
for i, _ax in enumerate(ax[0, :]):
_ax.set_xlabel(dfx.columns[i])
_ax.xaxis.set_label_position('top')
plt.tight_layout()
plt.savefig('chart.png')
def _plot_decision_tree(clf, dfx):
plt.close('all')
fig, ax = plt.subplots()
plot_tree(clf, filled=True, ax=ax)
plt.savefig('chart.png')
def _make_chart(clf, df):
if isinstance(clf, (LinearClassifierMixin, nb.MultinomialNB)):
with open('chart_spec.json', 'r', encoding='utf8') as fout:
spec = json.load(fout)
cdf = pd.DataFrame(clf.coef_, columns=df.columns)
cdf['class'] = clf.classes_
cdf = pd.melt(cdf, id_vars='class')
spec['data']['values'] = cdf.to_dict(orient='records')
return json.dumps(spec)
if isinstance(clf, nb.GaussianNB):
_make_gnb_chart(clf, df)
return True
if isinstance(clf, DecisionTreeClassifier):
_plot_decision_tree(clf, df)
return True
return False
- Create
report.html
file and add scaffolding
{% if score < 0.5 %}
{% set tcls = 'text-danger' %}
{% elif score < 0.7 %}
{% set tcls = 'text-warning' %}
{% elif score >= 0.7 %}
{% set tcls = 'text-success' %}
{% end %}
<div class="container-fluid">
<div class="row">
<div class="h1 text-center">
Your model scored <span class="{{ tcls }}">{{ '{:.2%}'.format(score) }}</span>
</div>
</div>
<div class="row">
<div id="modelchart"></div>
</div>
</div>
{% if spec %}
<script>
{% import json %}
{% try %}
{% set specs = json.loads(spec) %}
{% autoescape None %}
{% from tornado.escape import json_decode %}
var spec = {{ spec }}
var view = new vega.View(vega.parse(vegaLite.compile(spec).spec))
.renderer('svg')
.initialize('#modelchart')
.hover()
.run()
{% except (json.JSONDecodeError, TypeError) %}
$('#modelchart').html('<img src="chart.png"/>')
{% end %}
</script>
{% end %}
- create
js/script.js
file and add below lines
var modelName = null
var trainCols = []
var testSize = $('.custom-range').val()
var targetCol = null
var url = g1.url.parse(location.href)
const modelist = {
data: [{
'label': 'Logistic Regression',
'value': 'sklearn.linear_model.LogisticRegression'
},
{
'label': 'Perceptron',
'value': 'sklearn.linear_model.Perceptron'
},
{
'label': 'PAC',
'value': 'sklearn.linear_model.PassiveAggressiveClassifier'
},
{
'label': 'SVC',
'value': 'sklearn.svm.SVC'
},
{
'label': 'Nu-SVC',
'value': 'sklearn.svm.NuSCV'
},
{
'label': 'Linear SVC',
'value': 'sklearn.svm.LinearSVC'
},
{
'label': 'Nearest Neighbors',
'value': 'sklearn.neighbors.KNeighborsClassifier'
},
{
'label': 'Gaussian NB',
'value': 'sklearn.naive_bayes.GaussianNB'
},
{
'label': 'Bernoulli NB',
'value': 'sklearn.naive_bayes.BernoulliNB'
},
{
'label': 'Multinomial NB',
'value': 'sklearn.naive_bayes.MultinomialNB'
},
{
'label': 'Decision Tree',
'value': 'sklearn.tree.DecisionTreeClassifier'
},
{
'label': 'Random Forests',
'value': 'sklearn.ensemble.RandomForestClassifier'
},
{
'label': 'Neural Networks',
'value': 'sklearn.neural_network.MLPClassifier'
}
],
value_key: 'value',
label_key: 'label',
target: 'pushState',
key: 'model'
};
$('.formhandler').on('load', function (data) {
// Show ML section if data is available
$(data.length) ? $('#mlSection').removeClass('d-none') : $('#mlSection').addClass('d-none');
trainCols = _.filter(data.meta.columns, (c) => {
return !c.hide
})
trainCols = _.map(trainCols, 'name');
render_tc_dd(trainCols);
}).formhandler({
'pageSize': 5
})
$('#algorithm').on('change', () => {
modelName = url.searchKey.model
$('#modelchart').html('')
})
.on('load', () => {
modelName = 'sklearn.linear_model.LogisticRegression'
url.update({
model: modelName
})
})
.dropdown(modelist)
function render_tc_dd(trainCols) {
$('#targetCol').on('change', () => {
targetCol = url.searchKey.targetCol
})
.dropdown({
data: trainCols,
target: 'pushState',
key: 'targetCol'
})
}
function train() {
$.ajax({
url: `train_method`,
type: 'post',
headers: {
'Model-Retrain': true
},
data: {
'model_class': modelName,
'url': 'upload_data/data.csv',
'output': targetCol,
'testSize': testSize,
},
success: (data) => {
$('#report').html(data)
}
})
}
$('#train').on('click', () => {
// On click of Train button trigger
train()
})
To add interactive charts use vega
create chart_spec.json
add below vega code.
{
"width": 360,
"height": 270,
"$schema": "https://vega.github.io/schema/vega-lite/v3.json",
"encoding": {
"y": {"field": "variable", "type": "nominal"},
"x": {"field": "class", "type": "nominal"}
},
"layer": [
{
"mark": "rect",
"selection": {"brush": {"type": "interval"}},
"encoding": {
"color": {"field": "value", "type": "quantitative"}
}
},
{
"mark": "text",
"encoding": {
"text": {"field": "value", "type": "quantitative"}
}
}
],
"data": {
"name": "coef_",
"values": ""
}
}
In case of any query feel free to reach out.
- Jaidev Deshpande [email protected]
- Nivedita Deshmukh [email protected]
- Kamlesh Jaiswal [email protected]