Skip to content

guglxni/asd-ai-bot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Child Development Assistant 🧸

A conversational AI system for tracking child development (0-3 years), powered by local LLM technology. Combines natural language processing with developmental psychology to provide insights through friendly conversation.

App Preview Coming Soon

✨ Key Features

  • 💬 Natural Language Interface: Conversational assessment using Mistral 7B LLM
  • 📊 Real-time CDDC: Dynamic Child Development Data Chart visualization
  • 🎯 Age-Specific Assessment: Tailored developmental milestones tracking
  • 🔒 Privacy-First: Local processing with hardware acceleration support
  • 🤖 Adaptive Responses: Reinforcement learning for question optimization
  • 🌟 Comprehensive Tracking: Seven key developmental domains

🚀 Quick Start

For Users

Coming Soon! Web interface under development.

For Developers

# Clone repository
git clone https://github.com/yourusername/child-development-assistant
cd child-development-assistant

# Backend Setup
cd backend
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# Install backend dependencies with hardware acceleration
# For macOS (Apple Silicon):
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# For NVIDIA GPU:
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# For CPU only:
pip install llama-cpp-python

pip install -r requirements.txt

# Download LLM model
python scripts/download_model.py

# Frontend Setup
cd ../frontend
npm install

# Run Development Servers
# Terminal 1 (Backend):
cd backend && uvicorn app.main:app --reload --port 8000

# Terminal 2 (Frontend):
cd frontend && npm run dev

🎯 Development Areas & Assessment Methods

Physical Development 🏃‍♀️

  • Gross Motor: Large movement coordination
  • Fine Motor: Hand-eye coordination, manipulation
  • Assessment: Movement pattern analysis, milestone tracking

Communication & Language 🗣️

  • Receptive: Language comprehension
  • Expressive: Speech and communication
  • Assessment: Natural language processing, speech pattern analysis

Cognitive & Daily Living 🧠

  • Problem Solving: Learning and adaptation
  • Self-Care: Daily living skills
  • Assessment: Task completion analysis, behavioral patterns

Social-Emotional 👥

  • Social Interaction: Peer relationships
  • Emotional Expression: Feeling recognition
  • Assessment: Sentiment analysis, interaction patterns

🛠 Technical Stack

Backend

  • FastAPI for API endpoints
  • Mistral 7B (Q3 quantized) for conversation
  • Hardware acceleration support (Metal/CUDA/CPU)
  • SQLAlchemy for data persistence
  • Spacy for NLP processing

Frontend

  • React 18 with TypeScript
  • Material-UI for components
  • Chart.js for visualization
  • Vite for development

AI/ML Components

  • Local LLM inference
  • Reinforcement learning for question selection
  • Developmental milestone mapping
  • Sentiment analysis pipeline

💡 Implementation Details

LLM Configuration

# Hardware-specific optimizations
LLM_CONFIG = {
    "model_path": "models/mistral-7b-instruct-v0.2.Q3_K_S.gguf",
    "n_ctx": 2048,  # Adjust based on available memory
    "n_threads": 8,
    # Hardware acceleration settings:
    # Apple Silicon: n_gpu_layers=-1
    # NVIDIA GPU: n_gpu_layers=35
    # CPU only: n_gpu_layers=0
    "n_gpu_layers": -1,
    "n_batch": 512,  # Adjust based on GPU memory
    # Optional hardware-specific settings
    "use_mmap": True,
    "use_mlock": True
}

API Endpoints

  • /api/assessment/start: Initialize assessment session
  • /api/assessment/process: Process conversation
  • /api/speech/*: Speech-to-text and text-to-speech
  • /api/auth/*: Authentication endpoints

❓ FAQ

Q: System Requirements? A: Minimum Requirements:

  • Any modern CPU (Intel/AMD/ARM)
  • 8GB RAM
  • 5GB storage
  • Python 3.11+
  • Node.js 18+

Recommended Hardware:

  • Apple Silicon Mac (M1/M2/M3) OR
  • NVIDIA GPU (8GB VRAM) OR
  • Modern CPU (8+ cores)
  • 16GB RAM

Performance Tiers:

  1. Best: Apple Silicon Mac or NVIDIA RTX 3060+ GPU
  2. Good: NVIDIA GTX 1660+ GPU
  3. Basic: Modern multi-core CPU

Q: Is this a diagnostic tool? A: No, this is a development tracking assistant. Consult healthcare professionals for diagnosis.

Q: Data Privacy? A: All processing is local. No data leaves your device.

Q: Performance on different hardware? A: The system adapts to available hardware:

  • Apple Silicon: Fastest, most energy efficient
  • NVIDIA GPU: Similar performance to Apple Silicon
  • CPU only: Slower but fully functional

🆘 Support

🌟 Contributing

See CONTRIBUTING.md for guidelines.

📜 License

MIT License - See LICENSE for details.


Made with ❤️ for families and developers alike

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published