This project implements deep learning-based NT measurement from fetal ultrasound images to assist in anomaly detection. It employs U-Net for segmentation and EfficientNet for classification, integrating transformers and GANs for dataset augmentation and enhanced robustness.
- NT Segmentation: U-Net, ResU-Net, Attention U-Net for boundary delineation
- NT Classification: EfficientNet, Vision Transformers for thickness prediction
- Preprocessing: CLAHE, Gaussian denoising, ROI extraction, artifact removal
- Generative Models: GANs for synthetic data augmentation
- Optimization: Dice Loss, BCE, K-fold validation, real-time inference tuning
- Deployment: Optimized for edge devices, clinical ultrasound integration
- Dataset: Clinical fetal ultrasound images (11–14 weeks gestation)
- Normalization: Intensity standardization across ultrasound devices
- Enhancement: Adaptive histogram equalization, wavelet denoising
- ROI Extraction: Bounding box localization, patch-based segmentation
- Segmentation: U-Net, ResU-Net, Attention U-Net
- Classification: EfficientNet, Vision Transformers
- Generative Models: GANs for synthetic NT image augmentation
- Attention Mechanisms: Transformer-based feature enhancement
- Loss Functions: Dice Loss + BCE (Segmentation), Weighted CE (Classification)
- Validation: K-fold cross-validation, AUROC, Dice Score, IoU
- Efficiency: Quantization, pruning, inference speed optimization
- Edge Optimization: Model compression for real-time inference
- Clinical Validation: Benchmarking with expert annotations
- Deployment Formats: Web-based, API endpoints, ultrasound firmware integration
git clone https://github.com/gupta-nu/NT-fetal-anomaly-detection.git
cd NT-fetal-anomaly-detection
pip install -r requirements.txt
python preprocess.py --input data/raw --output data/processed
python train.py --model unet --epochs 50
python evaluate.py --model unet
MIT License