Skip to content

gw-zhong/CMC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python 3.10 Pytorch 2.7

Codes for Calibrating Multimodal Consensus for Emotion Recognition.

Usage

Clone the repository

git clone https://github.com/gw-zhong/CMC.git

Download the datasets

Preparation

Set the data_path and the model_path correctly in main.py.

Single Training

Unimodal Pretraining

python main.py --dataset SIMS --transformer_layers 5 --nhead 4 --out_dropout 0.4 --is_pseudo
python main.py --dataset SIMS-v2 --transformer_layers 4 --nhead 2 --out_dropout 0.3 --is_pseudo
python main.py --dataset MOSI --transformer_layers 2 --nhead 4 --out_dropout 0.5 --is_pseudo
python main.py --dataset MOSEI --transformer_layers 2 --nhead 4 --out_dropout 0.0 --is_pseudo

Or use ground truth unimodal label (CMC-GT):

python main.py --dataset SIMS --transformer_layers 1 --nhead 2 --out_dropout 0.1 --finetune
python main.py --dataset SIMS-v2 --transformer_layers 4 --nhead 8 --out_dropout 0.1 --finetune

Multimodal Finetuning

python main.py --dataset SIMS --transformer_layers 5 --nhead 4 --out_dropout 0.4 --is_pseudo --finetune --pretrained_model
python main.py --dataset SIMS-v2 --transformer_layers 4 --nhead 2 --out_dropout 0.3 --is_pseudo --finetune --pretrained_model
python main.py --dataset MOSI --transformer_layers 2 --nhead 4 --out_dropout 0.5 --is_pseudo --finetune --pretrained_model
python main.py --dataset MOSEI --transformer_layers 2 --nhead 4 --out_dropout 0.0 --is_pseudo --finetune --pretrained_model

Or use ground truth unimodal label (CMC-GT):

python main.py --dataset SIMS --transformer_layers 1 --nhead 2 --out_dropout 0.1 --finetune --pretrained_model
python main.py --dataset SIMS-v2 --transformer_layers 4 --nhead 8 --out_dropout 0.1 --finetune --pretrained_model

Hyperparameter tuning

Quick Start

bash script.sh

Normal Way

python main_tune.py --dataset [SIMS/SIMS-v2/MOSI/MOSEI] [--is_pseudo]

Note:

with --is_pseudo: training the CMC model;

without --is_pseudo: training the CMC-GT model (currently only supporting SIMS/SIMS-v2).

Reproduction

To facilitate the reproduction of the results in the paper, we have also uploaded the corresponding model weights:

Contact

If you have any question, feel free to contact me through [email protected].

About

Codes for "Calibrating Multimodal Consensus for Emotion Recognition".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •