Features | Adolescent Dataset | Adult Dataset | Child Dataset |
---|---|---|---|
Total number of records | 104 | 704 | 292 |
Patients diagnoised with disorder | 63 | 189 | 141 |
Patients not diagnoised with disorder | 41 | 515 | 151 |
Percentage of patients diagnoised with disorder | 60.58 % | 26.85 % | 48.29 % |
- Handle the missing values
- Split the data into features and target label
- Normalize the numerical variables using MinMax Scaler
- One-hot encoding for categorical variables
- Encoded the asd_classes column
- Logistic Regression
- Decision Tree
- K-Nearest Neighbor
- Naive Bayes
- Sequential Model (CNN)
Techniques | Accuracy | Precision | Sensitivity | F-beta score | F1 score |
---|---|---|---|---|---|
Logistic Regression | 0.98783 | 0.966 | 0.95 | 0.95 | 0.95 |
Decision Tree | 1 | 1 | 1 | 1 | 1 |
K-Nearest Neighbor | 0.96 | 0.933 | 1 | 0.94594 | 0.966551 |
Naive Bayes | 0.86 | 0.838 | 0.928 | 0.85526 | 0.8813 |
Sequential Model (CNN) | 0.959 | 0.964 | 0.964 | 0.964 | 0.964 |
Techniques | Accuracy | Precision | Sensitivity | F-beta score | F1 score |
---|---|---|---|---|---|
Logistic Regression | 0.9836 | 0.956 | 1 | 0.9641 | 0.97727 |
Decision Tree | 1 | 1 | 1 | 1 | 1 |
K-Nearest Neighbor | 0.959 | 0.9318 | 0.9534 | 0.9360 | 0.94252 |
Naive Bayes | 0.8934 | 0.8260 | 0.8837 | 0.837 | 0.8539 |
Sequential Model (CNN) | 0.97540 | 0.95454 | 0.9767 | 0.9589 | 0.9655 |
Techniques | Accuracy | Precision | Sensitivity | F-beta score | F1 score |
---|---|---|---|---|---|
Logistic Regression | 0.9 | 0.92307 | 0.92307 | 0.92307 | 0.92307 |
Decision Tree | 1 | 1 | 1 | 1 | 1 |
K-Nearest Neighbor | 0.75 | 0.7222 | 1 | 0.7647 | 0.8387 |
Naive Bayes | 0.75 | 0.7222 | 1 | 0.76470 | 0.8387 |
Sequential Model (CNN) | 0.699 | 0.8181 | 0.6923 | 0.78947 | 0.75001 |
The detection project is free and open-source software licensed under the Apache-2.0 license.