This is a python library for some numbers functions:
- working with primes (generating, primality tests)
- common maths (gcd, lcm, n'th root)
- modular arithmetics (inverse, Jacobi symbol, square root, solve CRT)
- converting strings to numbers or binary strings
Library may be used for learning/experimenting/research purposes. Should NOT be used for secure crypto implementations.
$ pip install libnum
Note that only Python 3 version is maintained.
For development or building this repository, poetry is needed.
Tests can be ran with
$ pytest --doctest-modules .
Common maths
- len_in_bits(n) - number of bits in binary representation of @n
- randint_bits(size) - random number with a given bit size
- extract_prime_power(a, p) - s,t such that a = p**s * t
- nroot(x, n) - truncated n'th root of x
- gcd(a, b, ...) - greatest common divisor of all arguments
- lcm(a, b, ...) - least common multiplier of all arguments
- xgcd(a, b) - Extented Euclid GCD algorithm, returns (x, y, g) : a * x + b * y = gcd(a, b) = g
Modular
- has_invmod(a, n) - checks if a has modulo inverse
- invmod(a, n) - modulo inverse
- solve_crt(remainders, modules) - solve Chinese Remainder Theoreme
- factorial_mod(n, factors) - compute factorial modulo composite number, needs factorization
- nCk_mod(n, k, factors) - compute combinations number modulo composite number, needs factorization
- nCk_mod_prime_power(n, k, p, e) - compute combinations number modulo prime power
Modular square roots
- jacobi(a, b) - Jacobi symbol
- has_sqrtmod_prime_power(a, p, k) - checks if a number has modular square root, modulus is p**k
- sqrtmod_prime_power(a, p, k) - modular square root by p**k
- has_sqrtmod(a, factors) - checks if a composite number has modular square root, needs factorization
- sqrtmod(a, factors) - modular square root by a composite modulus, needs factorization
Primes
- primes(n) - list of primes not greater than @n, slow method
- generate_prime(size, k=25) - generates a pseudo-prime with @size bits length. @k is a number of tests.
- generate_prime_from_string(s, size=None, k=25) - generate a pseudo-prime starting with @s in string representation
Factorization
- is_power(n) - check if @n is p**k, k >= 2: return (p, k) or False
- factorize(n) - factorize @n (currently with rho-Pollard method) warning: format of factorization is now dict like {p1: e1, p2: e2, ...}
ECC
- Curve(a, b, p, g, order, cofactor, seed) - class for representing elliptic curve. Methods:
- .is_null(p) - checks if point is null
- .is_opposite(p1, p2) - checks if 2 points are opposite
- .check(p) - checks if point is on the curve
- .check_x(x) - checks if there are points with given x on the curve (and returns them if any)
- .find_points_in_range(start, end) - list of points in range of x coordinate
- .find_points_rand(count) - list of count random points
- .add(p1, p2) - p1 + p2 on elliptic curve
- .power(p, n) - n✕P or (P + P + ... + P) n times
- .generate(n) - n✕G
- .get_order(p, limit) - slow method, trying to determine order of p; limit is max order to try
Converting
- s2n(s) - packed string to number
- n2s(n) - number to packed string
- s2b(s) - packed string to binary string
- b2s(b) - binary string to packed string
Stuff
- grey_code(n) - number in Grey code
- rev_grey_code(g) - number from Grey code
- nCk(n, k) - number of combinations
- factorial(n) - factorial
Author: hellman
License: MIT License