You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The MCP tool has been updated. You can modify the configuration in the 'mcp_config.json' file located in the party project folder to connect to your desired MCP server. You can find various MCP server configuration parameters that you may want to add here: modelcontextprotocol/servers. The default configuration for this project is the Everything server, which serves as a testing MCP server to verify its functionality. Reference workflow: start_with_MCP. Developer note: The MCP tool node can connect to the MCP server you have configured and convert the tools from the server into tools that can be directly used by LLMs. By configuring different local or cloud servers, you can experience all LLM tools available in the world.
A new browser tool node has been developed based on browser-use, which allows the LLM to automatically perform the browser tasks you publish.
The nodes for loading files, loading folders, loading web content, and all word embedding-related nodes have been upgraded. Now, the file content you load will always include the file name and paragraph index. The loading folder node can filter the files you wish to load through related_characters.
A local model tool for speech-to-text has been added, which is theoretically compatible with all ASR models on HF. For example: openai/whisper-small, nyrahealth/CrisperWhisper, and so forth.
Added ASR and TTS nodes for fish audio, please refer to the API documentation of fish audio for usage instructions.
Added the aisuite loader node, which is compatible with all APIs that aisuite can accommodate, including: ["openai", "anthropic", "aws", "azure", "vertex", "huggingface"]. Example workflow: start_with_aisuite.
A new category has been added: memory nodes, which can be utilized to manage your LLM conversation history. Currently, memory nodes support three modes for managing your conversation history: local JSON files, Redis, and SQL. By decoupling the LLM's conversation history from the LLM itself, you can employ word embedding models to compress and organize your conversation history, thus saving tokens and context windows for the LLM. Example workflow: External Memory.