Stay ahead of the curve with curated Gen AI & Machine Learning trends, delivered in a beautiful digest with AI-powered summaries.
A personalized news aggregator that fetches, ranks, and presents the latest trending content from the AI/ML ecosystem in a stunning, Apple Newsroom-inspired layout. Now featuring AI-generated summaries and trending explanations powered by Cohere or Anthropic Claude.
graph TB
subgraph "User Interface"
CLI[CLI main.py]
HTML[Generated HTML Digest]
end
subgraph "Core Processing"
CLI --> Fetchers[Fetchers Module]
Fetchers --> Ranker[Ranker Module]
Ranker --> Generator[Generator Module]
Generator --> Summarizer[AI Summarizer]
Summarizer --> Generator
Generator --> HTML
end
subgraph "Data Sources"
GitHub[GitHub Trending API]
GitHubExplore[GitHub Explore]
HFPapers[Hugging Face Papers]
HFSpaces[Hugging Face Spaces API]
Fetchers -->|Web Scraping| GitHub
Fetchers -->|Web Scraping| GitHubExplore
Fetchers -->|Web Scraping| HFPapers
Fetchers -->|API Call| HFSpaces
end
subgraph "AI Services"
Cohere[Cohere API<br/>command-a-03-2025]
Anthropic[Anthropic Claude<br/>claude-sonnet-4]
Summarizer -->|Generate Summaries| Cohere
Summarizer -->|Generate Summaries| Anthropic
end
subgraph "Data Flow"
GitHub -->|Stars, Velocity,<br/>Topics, Forks| Fetchers
GitHubExplore -->|Collections| Fetchers
HFPapers -->|Papers, Authors,<br/>Upvotes, arXiv IDs| Fetchers
HFSpaces -->|Spaces, Likes,<br/>SDKs| Fetchers
Fetchers -->|Raw Items| Ranker
Ranker -->|Scored & Ranked<br/>Top N Items| Generator
Generator -->|Items + Context| Summarizer
Summarizer -->|AI Summary<br/>Trending Reason| Generator
Generator -->|Jinja2 Template| HTML
end
subgraph "Configuration"
Config[config.py]
Config -.->|Settings| Fetchers
Config -.->|Weights| Ranker
Config -.->|API Keys| Summarizer
end
style CLI fill:#667eea,stroke:#333,stroke-width:2px,color:#fff
style HTML fill:#34c759,stroke:#333,stroke-width:2px,color:#fff
style Cohere fill:#ff9800,stroke:#333,stroke-width:2px,color:#fff
style Anthropic fill:#764ba2,stroke:#333,stroke-width:2px,color:#fff
style Summarizer fill:#667eea,stroke:#333,stroke-width:2px,color:#fff
- CLI Invocation โ User runs
python main.pywith options - Fetchers โ Parallel collection from multiple sources:
- GitHub Trending (web scraping)
- Hugging Face Papers (web scraping)
- Hugging Face Spaces (official API)
- GitHub Explore Collections (web scraping)
- Ranker โ Scores items based on:
- Popularity metrics (40%)
- Growth velocity (30%)
- Recency (30%)
- Generator โ Takes top N ranked items
- AI Summarizer โ For each item:
- Builds context from metadata
- Calls Cohere or Anthropic API
- Generates concise summary
- Explains trending reasons
- Template Rendering โ Jinja2 renders HTML with enriched data
- Output โ Beautiful HTML digest with AI summaries & copy buttons
- ๐ฅ GitHub Trending - Hottest repos with star velocity tracking
- ๐ Hugging Face Papers - Latest research from arXiv & HF Daily Papers
- ๐ Hugging Face Spaces - Trending interactive ML demos
- ๐ฆ GitHub Explore - Curated collections (coming soon)
- Clean, modern card-based layout inspired by Apple Newsroom
- Responsive design that works on all devices
- Smart typography and spacing
- Smooth animations and hover effects
- Popularity metrics (stars, likes, upvotes)
- Growth velocity (stars/day)
- Real-time trending indicators
- Topic categorization and tags
- Automatic one-sentence summaries for each item
- AI-generated trending explanations
- Powered by Cohere or Anthropic Claude
- Grounded in real metrics and descriptions
- One-click copy to clipboard
- Multiple time ranges: daily, weekly, monthly, or custom
- Configurable sources and filters
- Language-specific trending (Python, TypeScript, Jupyter, etc.)
- Easy branding customization
- Optional AI summaries (can be disabled)
- CLI interface for easy scripting
- Supports Windows Task Scheduler, cron, GitHub Actions
- One-command digest generation
- Optional auto-open in browser
- Python 3.8 or higher
- pip package manager
- (Optional) Cohere or Anthropic API key for AI summaries
- Clone the repository
git clone https://github.com/hoodini/yuv-ai-trends.git
cd yuv-ai-trends- Install dependencies
pip install -r requirements.txt- (Optional) Set up AI API key
# For Cohere (recommended - faster)
export COHERE_API_KEY="your-api-key-here"
# OR for Anthropic Claude
export ANTHROPIC_API_KEY="your-api-key-here"
# Get your free API key:
# Cohere: https://dashboard.cohere.com/api-keys
# Anthropic: https://console.anthropic.com/- Generate your first digest
# With AI summaries (if API key is set)
python main.py --range daily --open
# Without AI summaries
python main.py --range daily --open --no-aiThat's it! Your browser will open with today's AI trends digest. ๐
# Daily digest (default)
python main.py --range daily
# Weekly digest
python main.py --range weekly
# Monthly digest
python main.py --range monthly
# Custom date range (14 days)
python main.py --days 14
# Limit number of items
python main.py --range daily --limit 30
# Auto-open in browser
python main.py --range daily --open
# Custom output filename
python main.py --range daily --output my_digest.html| Option | Description | Example |
|---|---|---|
--range |
Time range: daily, weekly, monthly | --range weekly |
--days |
Custom number of days | --days 7 |
--limit |
Max items in digest | --limit 50 |
--open |
Open in browser after generation | --open |
--output |
Custom output filename | --output weekly.html |
--no-ai |
Disable AI-powered summaries | --no-ai |
Edit config.py to customize your digest:
# GitHub settings
GITHUB_LANGUAGES = ["python", "jupyter-notebook", "typescript"]
GITHUB_TOPICS = ["machine-learning", "deep-learning", "llm", "generative-ai"]
# Hugging Face settings
HF_SPACES_TRENDING_LIMIT = 20
# Scoring weights (adjust to your preference)
SCORING_WEIGHTS = {
"stars_weight": 0.4, # GitHub stars importance
"recency_weight": 0.3, # How recent matters
"velocity_weight": 0.3, # Growth rate importance
}
# AI Summarization settings
AI_SUMMARIES_ENABLED = True # Set to False to disable globally
AI_MAX_WORKERS = 3 # Parallel API calls (lower for rate limits)Create a .env file or set environment variables:
# Option 1: Cohere (recommended - faster, generous free tier)
COHERE_API_KEY=your_cohere_key_here
# Option 2: Anthropic Claude (more detailed summaries)
ANTHROPIC_API_KEY=your_anthropic_key_hereThe system will auto-detect which API key is available and use it.
PowerShell command:
$action = New-ScheduledTaskAction -Execute "python" -Argument "C:\path\to\news\main.py --range daily --open"
$trigger = New-ScheduledTaskTrigger -Daily -At 8am
Register-ScheduledTask -Action $action -Trigger $trigger -TaskName "AITrendsDaily"# Edit crontab
crontab -e
# Add this line for daily 8am execution
0 8 * * * cd /path/to/news && python main.py --range dailyCreate .github/workflows/daily-digest.yml:
name: Daily AI Trends
on:
schedule:
- cron: '0 8 * * *' # 8am UTC daily
jobs:
generate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- run: pip install -r requirements.txt
- run: python main.py --range dailySee AUTOMATION.md for more detailed automation options.
yuv-ai-trends/
โโโ main.py # CLI entry point & orchestration
โโโ config.py # Configuration settings
โโโ fetchers.py # Data collection from sources
โโโ ranker.py # Scoring & ranking algorithms
โโโ generator.py # HTML digest generation
โโโ summarizer.py # ๐ AI-powered summaries (Cohere/Anthropic)
โโโ hf_mcp.py # Hugging Face MCP integration
โโโ templates/
โ โโโ digest.html # Beautiful HTML template w/ AI sections
โโโ output/ # Generated digests
โโโ requirements.txt # Python dependencies
โโโ .env.example # API key template
โโโ README.md # You are here!
โโโ AUTOMATION.md # Automation guides
Edit templates/digest.html header section to customize branding:
<header>
<div>
<strong>Your Name</strong> โข Your Title โข <a href="https://yoursite.com">YourSite</a>
</div>
<h1>๐ค Your AI Trends Title</h1>
</header>The template uses clean, modern CSS. Key classes to customize:
.item- Card styling.item-title- Title appearance.section-title- Section headersheader- Top banner gradient
- GitHub Trending: Web scraping with BeautifulSoup
- Hugging Face Papers: HF Papers page scraping + arXiv metadata
- Hugging Face Spaces: Official HF Hub API
- GitHub Explore: Web scraping (limited availability)
Items are scored based on:
- Popularity: Stars, likes, upvotes (40%)
- Velocity: Recent growth rate (30%)
- Recency: How recent the item is (30%)
Scores are normalized to 0-100 and items are sorted accordingly.
- Python 3.8+: Core language
- Requests: HTTP client
- BeautifulSoup4: HTML parsing
- Hugging Face Hub: Official API client
- Jinja2: HTML templating
- Click: CLI interface
- Cohere SDK: AI summary generation (primary)
- Anthropic SDK: Alternative AI provider
- Concurrent Futures: Parallel API calls
Contributions are welcome! Here are some ways you can help:
- ๐ Report bugs and issues
- ๐ก Suggest new features or data sources
- ๐จ Improve the design/layout
- ๐ Improve documentation
- ๐ง Submit pull requests
# Fork and clone the repo
git clone https://github.com/yourusername/yuv-ai-trends.git
# Create a virtual environment
python -m venv .venv
source .venv/bin/activate # or .venv\Scripts\activate on Windows
# Install dependencies
pip install -r requirements.txt
# Make your changes and test
python main.py --range daily --openMIT License - feel free to use this project for personal or commercial purposes.
Yuval Avidani
- ๐ Website: YUV.AI
- ๐ผ AI Builder & Speaker
- ๐ Passionate about democratizing AI knowledge
- GitHub for trending data
- Hugging Face for Papers and Spaces API
- The amazing open-source AI/ML community
The digest includes:
- Total Items: Count of all trending content
- GitHub Repos: With stars, velocity, topics, forks, contributors
- Papers: With authors, arXiv IDs, upvotes, publication dates
- Spaces: With likes, SDKs, creation dates
- โจ AI Summaries: One-sentence description of what each item does
- ๐ฅ Trending Explanations: Why it's trending and what's innovative
- ๐ Copy Buttons: One-click copy summary to clipboard
All organized in a beautiful, clickable layout with smooth scrolling and responsive design.
Project: UniVA: Universal Video Agent
โจ AI Summary: UniVA is an open-source, generalist AI agent designed to perform diverse video-related tasks universally.
๐ฅ Why Trending: UniVA is trending due to its groundbreaking ability to handle a wide range of video tasksโfrom editing and summarization to generationโwith a single model, democratizing advanced video AI through open-source accessibility.
- AI-powered summaries (โ Completed!)
- Multiple AI provider support (โ Cohere + Anthropic)
- Copy to clipboard functionality (โ Completed!)
- Add more data sources (Papers with Code, Reddit, Twitter)
- Email digest delivery
- RSS feed generation
- User accounts and preferences
- Mobile app
- Sentiment analysis and topic clustering
Made with โค๏ธ for the AI/ML community