Skip to content

Commit fd6fb38

Browse files
committedOct 31, 2022
update: models & weights for cspdarknet
1 parent ce005c8 commit fd6fb38

File tree

3 files changed

+43
-10
lines changed

3 files changed

+43
-10
lines changed
 

‎README.md

+4-6
Original file line numberDiff line numberDiff line change
@@ -40,6 +40,8 @@ Tianheng Cheng, <a href="https://xinggangw.info/">Xinggang Wang</a><sup><span>&#
4040

4141
`This project is under active development, please stay tuned!` &#9749;
4242

43+
* `[2022-10-31]`: We release the models & weights for the [`CSP-DarkNet53`](configs/sparse_inst_cspdarknet53_giam.yaml) backbone. Which is a strong baseline with highly-competitve inference speed and accuracy.
44+
4345
* `[2022-10-19]`: We provide the implementation and inference code based on [MindSpore](https://www.mindspore.cn/), a nice and efficient Deep Learning framework. Thanks [Ruiqi Wang](https://github.com/RuiqiWang00) for this kind contribution!
4446

4547
* `[2022-8-9]`: We provide the FLOPs counter [`get_flops.py`](./tools/get_flops.py) to obtain the FLOPs/Parameters of SparseInst. This update also includes some bugfixs.
@@ -85,12 +87,11 @@ All models are trained on MS-COCO *train2017*.
8587
| [SparseInst (G-IAM)](configs/sparse_inst_r50vd_dcn_giam_aug.yaml) | [R-50-vd-DCN](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth) | 608 | &#10003; | 37.4 | 37.9 | 40.0 | [model](https://drive.google.com/file/d/1clYPdCNrDNZLbmlAEJ7wjsrOLn1igOpT/view?usp=sharing)|
8688
| [SparseInst (G-IAM)](configs/sparse_inst_r50vd_dcn_giam_aug.yaml) | [R-50-vd-DCN](https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50d_ra2-464e36ba.pth) | 640 | &#10003; | 37.7 | 38.1 | 39.3 | [model](https://drive.google.com/file/d/1clYPdCNrDNZLbmlAEJ7wjsrOLn1igOpT/view?usp=sharing)|
8789

88-
<!-- #### SparseInst with other backbones
90+
#### SparseInst with other backbones
8991

9092
| model | backbone | input | AP<sup>val</sup> | AP | FPS | weights |
9193
| :---- | :------ | :---: | :--------------: | :--: | :-: | :-----: |
92-
| SparseInst (G-IAM) | [VoVNet]() | 640 | - | - | - | [model]() |
93-
| SparseInst (G-IAM) | [CSPDarkNet]() | 640 | - | -| - | [model]() | -->
94+
| SparseInst (G-IAM) | [CSPDarkNet](configs/sparse_inst_cspdarknet53_giam.yaml) | 640 | 35.1 | -| - | [model](https://drive.google.com/file/d/1rcUJWUbusM216Zbtmo_xB774jdjb3qSt/view?usp=sharing) |
9495

9596
#### Larger models
9697

@@ -238,11 +239,8 @@ python tools/train_net.py --config-file configs/sparse_inst_r50vd_dcn_giam_aug.y
238239
### Custom Training of SparseInst
239240

240241
1. We suggest you convert your custom datasets into the `COCO` format, which enables the usage of the default dataset mappers and loaders. You may find more details in the [official guide of detectron2](https://detectron2.readthedocs.io/en/latest/tutorials/datasets.html#register-a-coco-format-dataset).
241-
242242
2. You need to check whether `NUM_CLASSES` and `NUM_MASKS` should be changed according to your scenarios or tasks.
243-
244243
3. Change the configurations accordingly.
245-
246244
4. After finishing the above procedures, you can easily train SparseInst by `train_net.py`.
247245

248246

‎configs/sparse_inst_cspdarknet53_giam.yaml

+3-1
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,9 @@ MODEL:
66
SPARSE_INST:
77
ENCODER:
88
IN_FEATURES: ["csp2", "csp3", "csp4"]
9+
DECODER:
10+
NAME: "GroupIAMSoftDecoder"
911
CSPNET:
10-
NAME: "darknet53"
12+
NAME: "cspdarknet53"
1113
OUT_FEATURES: ["csp2", "csp3", "csp4"]
1214
OUTPUT_DIR: "output/sparse_inst_cspdarknet53_giam"

‎sparseinst/backbones/cspnet.py

+36-3
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,8 @@
33
import torch
44
import torch.nn as nn
55

6-
from timm.models.layers import ConvBnAct, DropPath, AvgPool2dSame, create_attn
6+
from timm.models.layers import create_conv2d, create_act_layer
7+
from timm.models.layers import DropPath, AvgPool2dSame, create_attn
78

89

910
from detectron2.layers import ShapeSpec, FrozenBatchNorm2d
@@ -84,6 +85,39 @@
8485
)
8586
)
8687

88+
class ConvBnAct(nn.Module):
89+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1,
90+
bias=False, apply_act=True, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU, aa_layer=None,
91+
drop_block=None):
92+
super(ConvBnAct, self).__init__()
93+
use_aa = aa_layer is not None
94+
95+
self.conv = create_conv2d(
96+
in_channels, out_channels, kernel_size, stride=1 if use_aa else stride,
97+
padding=padding, dilation=dilation, groups=groups, bias=bias)
98+
99+
# NOTE for backwards compatibility with models that use separate norm and act layer definitions
100+
self.bn = norm_layer(out_channels)
101+
self.act = act_layer()
102+
self.aa = aa_layer(
103+
channels=out_channels) if stride == 2 and use_aa else None
104+
105+
@property
106+
def in_channels(self):
107+
return self.conv.in_channels
108+
109+
@property
110+
def out_channels(self):
111+
return self.conv.out_channels
112+
113+
def forward(self, x):
114+
x = self.conv(x)
115+
x = self.bn(x)
116+
x = self.act(x)
117+
if self.aa is not None:
118+
x = self.aa(x)
119+
return x
120+
87121

88122
def create_stem(
89123
in_chans=3, out_chs=32, kernel_size=3, stride=2, pool='',
@@ -394,8 +428,7 @@ def build_cspnet_backbone(cfg, input_shape=None):
394428
if norm_name == "FrozenBN":
395429
norm = FrozenBatchNorm2d
396430
elif norm_name == "SyncBN":
397-
from detectron2.layers import NaiveSyncBatchNorm
398-
norm = NaiveSyncBatchNorm
431+
norm = nn.SyncBatchNorm
399432
else:
400433
norm = nn.BatchNorm2d
401434

0 commit comments

Comments
 (0)