Arcee is a tool that helps you to integrate ML tasks with Kiroframe. This tool can automatically collect executor metadata from the cloud and process stats.
Arcee requires Python 3.8+ to run.
To install the kiroframe_arcee
package, use pip:
pip install kiroframe-arcee
Import the kiroframe_arcee
module into your code as follows:
import kiroframe_arcee as arcee
To initialize the arcee collector use the init
method with the following parameters:
- token (str, required): the profiling token.
- task_key (str, required): the task key for which you want to collect data.
- run_name (str, optional): the run name.
- period (int, optional): arcee daemon process heartbeat period in seconds (default is 1).
To initialize the collector using a context manager, use the following code snippet:
with arcee.init(token="YOUR-PROFILING-TOKEN",
task_key="YOUR-TASK-KEY",
run_name="YOUR-RUN-NAME",
period=PERIOD):
# some code
Examples:
with arcee.init("00000000-0000-0000-0000-000000000000", "linear_regression",
run_name="My run name", period=1):
# some code
This method automatically handles error catching and terminates arcee execution.
Alternatively, to get more control over error catching and execution finishing, you can initialize the collector using a corresponding method.
Note that this method will require you to manually handle errors or terminate arcee execution using the error
and finish
methods.
arcee.init(token="YOUR-PROFILING-TOKEN", task_key="YOUR-TASK-KEY")
# some code
arcee.finish()
# or in case of error
arcee.error()
To send metrics, use the send
method with the following parameter:
- data (dict, required): a dictionary of metric names and their respective values (note that metric data values should be numeric).
arcee.send({"YOUR-METRIC-1-KEY": YOUR_METRIC_1_VALUE, "YOUR-METRIC-2-KEY": YOUR_METRIC_2_VALUE})
Example:
arcee.send({ "accuracy": 71.44, "loss": 0.37 })
To add hyperparameters, use the hyperparam
method with the following parameters:
- key (str, required): the hyperparameter name.
- value (str | number, required): the hyperparameter value.
arcee.hyperparam(key="YOUR-PARAM-KEY", value=YOUR_PARAM_VALUE)
Example:
arcee.hyperparam("EPOCHS", 100)
To tag a run, use the tag
method with the following parameters:
- key (str, required): the tag name.
- value (str | number, required): the tag value.
arcee.tag(key="YOUR-TAG-KEY", value=YOUR_TAG_VALUE)
Example:
arcee.tag("Algorithm", "Linear Learn Algorithm")
To add a milestone, use the milestone
method with the following parameter:
- name (str, required): the milestone name.
arcee.milestone(name="YOUR-MILESTONE-NAME")
Example:
arcee.milestone("Download training data")
To add a stage, use the stage
method with the following parameter:
- name (str, required): the stage name.
arcee.stage(name="YOUR-STAGE-NAME")
Example:
arcee.stage("preparing")
Logging a dataset allows you to create a dataset or a new version of
the dataset if the dataset has already been created, but has been changed.
To create a dataset, use the Dataset
class with the following parameters:
Dataset parameters:
- key (str, required): the unique dataset key.
- name (str, optional): the dataset name.
- description (str, optional): the dataset description.
- labels (list, optional): the dataset labels.
Version parameters:
- aliases (list, optional): the list of aliases for this version.
- meta (dict, optional): the dataset version meta.
- timespan_from (int, optional): the dataset version timespan from.
- timespan_to (int, optional): the dataset version timespan to.
dataset = arcee.Dataset(key='YOUR-DATASET-KEY',
name='YOUR-DATASET-NAME',
description="YOUR-DATASET-DESCRIPTION",
...
)
dataset.labels = ["YOUR-DATASET-LABEL-1", "YOUR-DATASET-LABEL-2"]
dataset.aliases = ['YOUR-VERSION-ALIAS']
To log a dataset, use the log_dataset
method with the following parameters:
- dataset (Dataset, required): the dataset object.
- comment (str, optional): the usage comment.
arcee.log_dataset(dataset=dataset, comment='LOGGING_COMMENT')
To use a dataset, use the use_dataset
method with dataset key:version
.
Parameters:
- dataset (str, required): the dataset indentifier in key:version format.
- comment (str, optional): the usage comment.
dataset = arcee.use_dataset(
dataset='YOUR-DATASET-KEY:YOUR-DATASET-VERSION-OR-ALIAS')
You can add or remove files from dataset and download it as well. Supported file paths:
file://
- the local files.s3://
- the amazon S3 files.
adding / removing files
local:
dataset.remove_file(path='file://LOCAL_PATH_TO_FILE_1')
dataset.add_file(path='file://LOCAL_PATH_TO_FILE_2')
arcee.log_dataset(dataset=dataset)
s3:
os.environ['AWS_ACCESS_KEY_ID'] = 'AWS_ACCESS_KEY_ID'
os.environ['AWS_SECRET_ACCESS_KEY'] = 'AWS_SECRET_ACCESS_KEY'
dataset.remove_file(path='s3://BUCKET/PATH_1')
dataset.add_file(path='s3://BUCKET/PATH_2')
arcee.log_dataset(dataset=dataset)
downloading: Parameters:
- overwrite (bool, optional): overwrite an existing dataset or skip downloading if it already exists.
dataset.download(overwrite=True)
Example:
# use version v0, v1 etc, or any version alias: my_dataset:latest
dataset = arcee.use_dataset(dataset='my_dataset:V0')
path_map = dataset.download()
for local_path in path_map.values():
with open(local_path, 'r'):
# read downloaded file
new_dataset = arcee.Dataset('new_dataset')
new_dataset.add_file(path='s3://ml-bucket/datasets/training_dataset.csv')
arcee.log_dataset(dataset=new_dataset)
new_dataset.download()
To create a model, use the model
method with the following parameters:
- key (str, required): the unique model key.
- path (str, optional): the run model path.
arcee.model(key="YOUR-MODEL-KEY", path="YOUR-MODEL-PATH")
Example:
arcee.model("my_model", "/home/user/my_model")
To set a custom model version, use the model_version
method with the following parameter:
- version (str, required): the version name.
arcee.model_version(version="YOUR-MODEL-VERSION")
Example:
arcee.model_version("1.2.3-release")
To set a model version alias, use the model_version_alias
method with the following parameter:
- alias (str, required): the alias name.
arcee.model_version_alias(alias="YOUR-MODEL-VERSION-ALIAS")
Example:
arcee.model_version_alias("winner")
To add tags to a model version, use the model_version_tag
method with the following parameters:
- key (str, required): the tag name.
- value (str | number, required): the tag value.
arcee.model_version_tag(key="YOUR-MODEL-VERSION-TAG-KEY", value=YOUR_MODEL_VERSION_TAG_VALUE)
Example:
arcee.model_version_tag("env", "staging demo")
To create an artifact, use the artifact
method with the following parameters:
- path (str, required): the run artifact path.
- name (str, optional): the artifact name.
- description (str, optional): the artifact description.
- tags (dict, optional): the artifact tags.
arcee.artifact(path="YOUR-ARTIFACT-PATH",
name="YOUR-ARTIFACT-NAME",
description="YOUR-ARTIFACT-DESCRIPTION",
tags={"YOUR-ARTIFACT-TAG-KEY": YOUR_ARTIFACT_TAG_VALUE})
Example:
arcee.artifact("https://s3/ml-bucket/artifacts/AccuracyChart.png",
name="Accuracy line chart",
description="The dependence of accuracy on the time",
tags={"env": "staging"})
To add a tag to an artifact, use the artifact_tag
method with the following parameters:
- path (str, required): the run artifact path.
- key (str, required): the tag name.
- value (str | number, required): the tag value.
arcee.artifact_tag(path="YOUR-ARTIFACT-PATH",
key="YOUR-ARTIFACT-TAG-KEY",
value=YOUR_ARTIFACT_TAG_VALUE)
Example:
arcee.artifact_tag("https://s3/ml-bucket/artifacts/AccuracyChart.png",
"env", "staging demo")
To finish a run, use the finish
method.
arcee.finish()
To fail a run, use the error
method.
arcee.error()