Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[patch] Office hours optional #645

Merged
merged 1 commit into from
May 2, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 33 additions & 10 deletions iotfunctions/aggregate.py
Original file line number Diff line number Diff line change
Expand Up @@ -926,7 +926,7 @@ class MsiOccupancyFrequency(DirectAggregator):

KPI_FUNCTION_NAME = "MSI_OccupancyFrequency"

def __init__(self, occupancy_count, office_hour_start, office_hour_end, name=None):
def __init__(self, occupancy_count, office_hour_start=None, office_hour_end=None, name=None):
super().__init__()
self.logger = logging.getLogger('%s.%s' % (self.__module__, self.__class__.__name__))

Expand All @@ -939,11 +939,16 @@ def __init__(self, occupancy_count, office_hour_start, office_hour_end, name=Non
self.office_hour_start = office_hour_start
self.office_hour_end = office_hour_end

# Hint: office_hour_start == office_hour_end == None is a valid scenario
if self.office_hour_start is not None and self.office_hour_start == self.office_hour_end:
raise RuntimeError(f"The dimension used as office_hour_start is identical to the dimension used as "
f"office_hour_end: {self.office_hour_start}")

if name is not None and len(name) > 0:
self.output_name = name
else:
raise RuntimeError(
f"No name was provided for the metric which is calculated by function {self.KPI_FUNCTION_NAME}: name={name}")
raise RuntimeError(f"No name was provided for the metric which is calculated by function "
f"{self.KPI_FUNCTION_NAME}: name={name}")

def execute(self, df, group_base, group_base_names, start_ts=None, end_ts=None, entities=None, offset=None):

Expand Down Expand Up @@ -992,19 +997,37 @@ def execute(self, df, group_base, group_base_names, start_ts=None, end_ts=None,
s_frequency = groupby[diff_col_name].sum()

# Determine availability per space
df_per_space = df[[self.office_hour_start, self.office_hour_end]].groupby(group_base[0]).first()
s_availability = pd.to_timedelta(df_per_space[self.office_hour_end].where(df_per_space[self.office_hour_end].notna(), "24:00") + ":00") - \
pd.to_timedelta(df_per_space[self.office_hour_start].where(df_per_space[self.office_hour_start].notna(), "00:00") + ":00")
s_availability.name = availability_col_name
if self.office_hour_start is not None and self.office_hour_end is not None:
df_per_space = df[[self.office_hour_start, self.office_hour_end]].groupby(group_base[0]).first()
s_availability = pd.to_timedelta(df_per_space[self.office_hour_end].where(df_per_space[self.office_hour_end].notna(), "24:00") + ":00") - \
pd.to_timedelta(df_per_space[self.office_hour_start].where(df_per_space[self.office_hour_start].notna(), "00:00") + ":00")

elif self.office_hour_start is not None and self.office_hour_end is None:
s_start_per_space = df[self.office_hour_start].groupby(group_base[0]).first()
s_availability = pd.to_timedelta("24:00:00") - \
pd.to_timedelta(s_start_per_space.where(s_start_per_space.notna(), "00:00") + ":00")

# Merge s_availability with s_frequency
elif self.office_hour_start is None and self.office_hour_end is not None:
s_end_per_space = df[self.office_hour_end].groupby(group_base[0]).first()
s_availability = pd.to_timedelta(
s_end_per_space.where(s_end_per_space.notna(), "24:00") + ":00")

else:
s_availability = None


# Merge s_availability with s_frequency or set result column to 24 hours when not available
df_frequency = s_frequency.to_frame()
df_frequency = df_frequency.join(s_availability, how='left', on=group_base[0])
if s_availability is not None:
s_availability.name = availability_col_name
df_frequency = df_frequency.join(s_availability, how='left', on=group_base[0])
else:
df_frequency[availability_col_name] = pd.Timedelta("24:00:00")

# Divide frequency by availability. Avoid division by zero, replace frequency by -1 for negative availabilities
s_avail_greater_zero = (df_frequency[availability_col_name] > pd.Timedelta(0))
df_frequency[diff_col_name].where(s_avail_greater_zero, -1, inplace=True)
df_frequency[availability_col_name].where(s_avail_greater_zero, 1, inplace=True)
df_frequency[availability_col_name].where(s_avail_greater_zero, 100, inplace=True)
s_frequency = (df_frequency[diff_col_name] / df_frequency[availability_col_name]) * 100
s_frequency.name = self.output_name

Expand Down
Loading