Skip to content

An irony detection neural network. Made for the Text Analysis and Retrieval (TAR) course at UniZG-FER, academic year 2020/2021.

Notifications You must be signed in to change notification settings

istresec/irony-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

72 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Irony Detection

Petar Kovač*, Jelena Bratulić*, Ivan Stresec*

Project Report

Abstract

Sentiment analysis is the task of processing data with the goal of gauging general public opinion by classifying a text as either positive, negative or neutral. One particularly difficult aspect of sentiment analysis is irony detection since it can, and often does, change text sentiment. Text-based irony detection is a difficult problem owing to the additional textual cues that are often used and which can be ambiguous. In this paper, we discuss the effect of punctuation and punctuation-based features on the ability of a model to detect irony. The data we used is taken from the SemEval 2018 competition, task 3. We show that including punctuation substantially improves model performance on several neural network models commonly used in NLP (CNNs, RNNs and LSTMs).


Made as part of the Text Analysis and Retrieval (TAR) course at UniZg-FER, academic year 2020/2021.

About

An irony detection neural network. Made for the Text Analysis and Retrieval (TAR) course at UniZG-FER, academic year 2020/2021.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages