Skip to content

itamaro/tensorflow-object-detection-app

Repository files navigation

TensorFlow Object Detection web app

Based on a demo app by GoogleCloudPlatform, using TensorFlow with pre-trained models to implement a dockerized general object detection service.

See also the Google Solution.

Build & Run

The default version (non-GPU):

docker build -t object-detection-app:latest .
docker run --rm -p 8000:8000 object-detection-app:latest

The GPU version (requires NVIDIA-Docker):

docker build -t object-detection-app:gpu .
docker run --runtime=nvidia --rm -p 8000:8000 object-detection-app:gpu

Once the container is up and running, access the app on localhost:8000 (replace localhost with the Docker Machine IP, if using Docker Machine).

Wait for something similar to the following lines:

2017-12-18 18:04:07.558019: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA
 * Running on http://0.0.0.0:8000/ (Press CTRL+C to quit)

Running Pre-built Images

To run pre-built images from Docker Hub:

docker run --rm -p 8000:8000 itamarost/object-detection-app:1.0-py3
# or, using nvidia-docker
docker run --runtime=nvidia --rm -p 8000:8000 itamarost/object-detection-app:1.0-py3-gpu

Deploy to Kubernetes

To run the app on Kubernetes (assuming configured kubectl):

kubectl apply -f k8s-deploy.yaml

To utilize a GPU, for Kubernetes clusters with available Nvidia GPU cards (alpha at the moment, may break due to Kubernetes API changes):

kubectl apply -f k8s-deploy-gpu.yaml

Feel free to tailor the YAML to your needs (deployed image, fronting service type, namespace, etc.).

About

Dockerized TensorFlow Object Detection web app

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published