Skip to content

ivadomed/model-gm-contrast-region-agnostic

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 

Repository files navigation

Automatic Segmentation of Spinal Cord Gray Matter Across Multiple MRI Contrasts and Regions

Repository for contrast and region agnostic spinal cord Gray Matter (GM) segmentation project using nnUnetV2.

This repo contains the code for data preprocessing, training and running inferences mainly based on Spinal Cord Toolbox and nnUnet.

GMseg_II

1. Main Dependencies

  • SCT

  • Python 3.10

2. Dataset Summary

Centers/datasets/sites detail:

Table 01 : Training dataset

Dataset Contrast Category Region In-plane res.
marseille-t2s-template 3T T2starw HC cervical, torax, lumbar 0.47x0.47
gmseg-challenge-2016 3T T2starw HC cervical 0.6×0.6
inspired 3T T2starw HC DCM SCI cervical 0.5×0.5
lumbar-vanderbilt 3T T2starw HC lumbar 0.3×0.3
sct-testing-large 3T T2starw HC MS DCM cervical sup. and inf. (2 runs) 0.5×0.5
sct-testing-large 3T MTR HC MS DCM cervical sup. and inf. (2 runs) 0.9×0.9
dcm-brno 3T T1w ax HC cervical 0.35×0.35
hc-ucsf-psir 3T PSIR ax HC C3 0.8x0.8
marseille-7T-T2star 7T T2starw HC MS ALS cervical 0.18x0.18 0.22x0.22
marseille-7T-MP2RAGE 7T UNIT1 HC MS ALS AMS cervical sup. and inf. (2 runs) 0.3x0.3
marseille-7T-MP2RAGE 7T T1map HC MS ALS AMS cervical sup. and inf. (2 runs) 0.3x0.3
ms-barcelona-psir 3T PSIR ax HC MS C3 0.78×0.78
hc-lumbar-zurich 3T T2starw HC lumbar 0.5×0.5
als-basel-ramira 3T rAMIRA HC ALS PPS SMA cervical and lumbar 0.5×0.5
umass-ms-ge-pioneer3 3T PDw HC cervical 0.37×0.37
umass-siemens-espree1.5 1.5T PDw HC cervical 0.39×0.39
ms-karolinska-2020 3T T2star MS cervical 0.35×0.35
ms-basel-2020 3T T2star MS cervical 0.35×0.35
levin-stroke 3T T2star Stroke cervical 0.5×0.5
philadelphia-pediatric 3T T2star Pediatric cervical 0.5×0.5
vanderbilt-7t-swi 7T T2star HC MS cervical 0.29×0.29
vanderbilt-7t-swi 7T QSM HC MS cervical 0.29×0.29
vanderbilt-7t-swi 7T SWI HC MS cervical 0.29×0.29

3. Preprocessing

For all contrasts

  • Reorientation to RPI
  • Crop the images around the GM mask, keeping all the information in the axial plane.
  • Reslice the images to 0.3x0.3 in the axial plane

4. Train GM model

4.1 Setting up the environment and installation

  1. Create a conda environment with:
conda create -n gm-env python=3.10
  1. Activate the environment:
conda activate gm-env
  1. Install the required packages:
pip install -r codes/requirements.txt

4.2 Convertion of BIDS data to nnUnetV2

All datasets must be in a BIDS format, and then converted to an nnUnet format with the following command:

python codes/convert_bids_to_nnUNetV2.py --path-data ~/DATASET_BIDS   --path-out  ~/nnUNet_raw/ --contrast T2star --label-suffix label-GM_seg --dataset-name gm-contrast-agnostic --dataset-number 801 --seed 99 --split 0.8 0.2 

4.3 Training

  1. Plan and preprocessing

To extract specific dataset properties, such as image size, voxel spacing, intensity information, etc. that will be used by nnUnet to design the U-Net configurations with the ecoder recidual econder plans, use:

nnUNetv2_plan_and_preprocess -d 820 --verify_dataset_integrity
  1. Train

Since the acquisition in several subjects was of 2D axial images perpendicular to the curvature of the SC and at the end stacked in a 3D matrix, we cannot consider the GM images to be a 3D structure for all subjects. So we are going to develop a 2D model.

To train a 2D model, with Residual Encoder Presets L use :

nnUNetv2_train 820 2d 2 --npz 

4.4 Running inference

  1. Using sct_deepseg
sct_deepseg graymatter -install
sct_deepseg graymatter -i IMAGE.nii.gz -o IMAGE_gm_seg.nii.gz 
  1. For datasets in a nnUnet format:
nnUNetv2_predict -d Dataset820_gm-seg  -i ~/imagesTs/ -o ~/test_820 -f  2 -c 2d

4.5. Compute segmentation metrics

As we are evaluating the GM segmentation in 2D images, it is convenient to evaluate the images independently in each 2D slice, for which we can use Dice Score and Haussdorf Distance metrics using the following script:

python codes/calculate_2d_metrics.py -gt sub-01_GT_seg.nii.gz -inf sub-01_inference_seg.nii.gz sub-01_inference_seg2.nii.gz -o sub-01.csv

Acknowledgments

Open datasets :

  1. marseille-t2s-template : Callot V., Laines-Medina N., Taso M., & Fradet L. (2022). In Vivo Human Spinal Cord MRI data – From cervical to thoraco-lumbar levels. DOI https://doi.org/10.17605/OSF.IO/YMRGK
  2. gmseg-challenge-2016 : Prados F. et al. (2017). Spinal cord grey matter segmentation challenge. NeuroImage, 152, 312–329. DOI https://doi.org/10.1016/j.neuroimage.2017.03.010

Collaborators :

  • Virginie Callot (Center for Magnetic Resonance in Biology and Medicine, CRMBM-CEMEREM, UMR 7339, CNRS, Aix-Marseille University, Marseille, France)
  • David Gergely and Gupta Sarvagya (Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland)
  • Kristin P. O'Grady (Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, United States)
  • Regina Schlaeger (Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland)
  • Josef Bednarik, Tomas Horak and Petr Kudlicka (Department of Neurology, University Hospital Brno, Brno, Czechia)
  • Nico Papinutto (Department of Neurology, University of California, San Francisco, CA, USA)
  • Deborah Pareto, Jaume Sastre-Garriga and Alex Rovira (Section of Neuroradiology and Magnetic Resonance Unit, Department of Radiology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain)
  • Claudia Wheeler Kingshott (NMR Research Unit, University Department of Clinical Neurology, Institute of Neurology, University College London, Queen Square, London, United Kingdom)
  • Seth Smith (Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232 USA)
  • Charidimos Tsagkas (Translational Neuroradiology Section, National Institutes of Health, Bethesda, USA)
  • Cristina Granziera (Neurologic Clinic and Policlinic, University Hospital Basel and University of Basel, Basel, Switzerland)
  • Feroze Mohamed (Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA)
  • Mindy Levin (School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, Qc, Canada)
  • Tobias Granberg (Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden)
  • Christopher Hemond (Laboratory for Neuroimaging Research, Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Diseases, Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published