-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- separate modules for 3D anlge and signed angle - move cartesian logic into intern/geom/cartesian.rs - keep the Cartesian struct itself in public/keypoints.rs
- Loading branch information
Showing
5 changed files
with
281 additions
and
273 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,174 +1,8 @@ | ||
//! Geometry primitives. | ||
|
||
use std::f32::consts::{PI, TAU}; | ||
pub(crate) use angle3d::Angle3d; | ||
pub(crate) use signed_angle::SignedAngle; | ||
|
||
/// A direction in 3D space. | ||
#[derive(Clone, Copy, PartialEq, Debug)] | ||
pub(crate) struct Angle3d { | ||
/// angle to z-axis, -PI to PI | ||
pub azimuth: SignedAngle, | ||
/// angle to y axis, -PI to PI | ||
pub polar: SignedAngle, | ||
} | ||
|
||
/// Represents angles from -PI (exclusive) to PI (inclusive) | ||
#[derive(Clone, Copy, PartialEq)] | ||
pub(crate) struct SignedAngle(pub(crate) f32); | ||
|
||
impl Angle3d { | ||
pub(crate) fn new(azimuth: SignedAngle, polar: SignedAngle) -> Self { | ||
Self { azimuth, polar } | ||
} | ||
|
||
pub(crate) const ZERO: Self = Angle3d { | ||
azimuth: SignedAngle::ZERO, | ||
polar: SignedAngle::ZERO, | ||
}; | ||
|
||
#[allow(dead_code)] | ||
pub(crate) fn degree(azimuth: f32, polar: f32) -> Self { | ||
Self { | ||
azimuth: SignedAngle::degree(azimuth), | ||
polar: SignedAngle::degree(polar), | ||
} | ||
} | ||
|
||
#[allow(dead_code)] | ||
pub(crate) fn radian(azimuth: f32, polar: f32) -> Self { | ||
Self { | ||
azimuth: SignedAngle::radian(azimuth), | ||
polar: SignedAngle::radian(polar), | ||
} | ||
} | ||
|
||
/// Distance in a sphere with r = 0.5, result is in [0.0,1.0] | ||
pub(crate) fn distance(&self, other: &Self) -> f32 { | ||
let a = self.polar.sin() * other.polar.sin() * (self.azimuth - other.azimuth).cos(); | ||
let b = self.polar.cos() * other.polar.cos(); | ||
// Distance in unit sphere | ||
let dist = (2.0 - 2.0 * (a + b)).sqrt(); | ||
dist / 2.0 | ||
} | ||
|
||
/// Mirrors left/right, doesn't affect up/down or forward/backward | ||
pub(crate) fn x_mirror(&self) -> Self { | ||
Self { | ||
azimuth: self.azimuth.mirror(), | ||
polar: self.polar, | ||
} | ||
} | ||
} | ||
|
||
impl SignedAngle { | ||
pub(crate) const ZERO: Self = SignedAngle(0.0); | ||
|
||
pub(crate) fn degree(alpha: f32) -> Self { | ||
Self(alpha.to_radians()).ensure_signed() | ||
} | ||
|
||
pub(crate) fn as_degree(&self) -> f32 { | ||
self.0.to_degrees() | ||
} | ||
|
||
/// Returns a copy of the angle where values are guaranteed to be in (-PI and PI] | ||
#[inline] | ||
fn ensure_signed(mut self) -> Self { | ||
self.0 = self.0 % TAU; | ||
// maybe branching here is bad for performance? | ||
// no performance testing was done so far | ||
if self.0 > PI { | ||
self.0 -= TAU; | ||
} else if self.0 <= -PI { | ||
self.0 += TAU; | ||
} | ||
self | ||
} | ||
|
||
pub(crate) fn abs(mut self) -> Self { | ||
self.0 = self.0.abs(); | ||
self | ||
} | ||
|
||
pub(crate) fn radian(alpha: f32) -> Self { | ||
Self(alpha).ensure_signed() | ||
} | ||
|
||
fn mirror(self) -> SignedAngle { | ||
Self(-*self).ensure_signed() | ||
} | ||
} | ||
|
||
impl std::ops::Deref for SignedAngle { | ||
type Target = f32; | ||
|
||
fn deref(&self) -> &Self::Target { | ||
&self.0 | ||
} | ||
} | ||
|
||
impl std::ops::Add for SignedAngle { | ||
type Output = Self; | ||
|
||
fn add(self, rhs: Self) -> Self::Output { | ||
Self(self.0 + rhs.0).ensure_signed() | ||
} | ||
} | ||
|
||
impl std::ops::Sub for SignedAngle { | ||
type Output = Self; | ||
|
||
fn sub(self, rhs: Self) -> Self::Output { | ||
Self(self.0 - rhs.0).ensure_signed() | ||
} | ||
} | ||
|
||
impl std::fmt::Debug for SignedAngle { | ||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { | ||
let alpha = self.as_degree(); | ||
write!(f, "{alpha:.2}°") | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use crate::test_utils::*; | ||
|
||
use std::f32::consts::{FRAC_PI_2, FRAC_PI_3, FRAC_PI_4}; | ||
|
||
/// Tests `SignedAngle::degree` | ||
/// | ||
/// The inputs of are in ° in [f32::MIN, f32::MAX] | ||
/// The internal representation must be in radians in (-PI, +PI]. | ||
#[test] | ||
fn test_angle_degree_to_radian() { | ||
assert_float_angle_eq(0.0, SignedAngle::degree(0.0)); | ||
assert_float_angle_eq(FRAC_PI_4, SignedAngle::degree(45.0)); | ||
assert_float_angle_eq(-FRAC_PI_4, SignedAngle::degree(-45.0)); | ||
assert_float_angle_eq(-FRAC_PI_4, SignedAngle::degree(315.0)); | ||
assert_float_angle_eq(PI, SignedAngle::degree(-180.0)); | ||
assert_float_angle_eq(PI, SignedAngle::degree(180.0)); | ||
} | ||
|
||
#[test] | ||
fn test_mirror_signed_angle() { | ||
assert_eq!(SignedAngle::ZERO, SignedAngle::ZERO.mirror()); | ||
assert_eq!(SignedAngle(PI), SignedAngle(PI).mirror()); | ||
assert_angle_eq( | ||
SignedAngle(FRAC_PI_2), | ||
SignedAngle(3.0 * FRAC_PI_2).mirror(), | ||
); | ||
assert_angle_eq( | ||
SignedAngle::degree(60.0), | ||
SignedAngle::degree(300.0).mirror(), | ||
); | ||
assert_angle_eq( | ||
SignedAngle(FRAC_PI_3), | ||
SignedAngle(FRAC_PI_3).mirror().mirror(), | ||
); | ||
assert_angle_eq( | ||
SignedAngle(FRAC_PI_4), | ||
SignedAngle(FRAC_PI_4).mirror().mirror(), | ||
); | ||
} | ||
} | ||
mod angle3d; | ||
mod signed_angle; | ||
mod cartesian; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
use super::SignedAngle; | ||
|
||
/// A direction in 3D space. | ||
#[derive(Clone, Copy, PartialEq, Debug)] | ||
pub(crate) struct Angle3d { | ||
/// angle to z-axis, -PI to PI | ||
pub azimuth: SignedAngle, | ||
/// angle to y axis, -PI to PI | ||
pub polar: SignedAngle, | ||
} | ||
|
||
impl Angle3d { | ||
pub(crate) fn new(azimuth: SignedAngle, polar: SignedAngle) -> Self { | ||
Self { azimuth, polar } | ||
} | ||
|
||
pub(crate) const ZERO: Self = Angle3d { | ||
azimuth: SignedAngle::ZERO, | ||
polar: SignedAngle::ZERO, | ||
}; | ||
|
||
#[allow(dead_code)] | ||
pub(crate) fn degree(azimuth: f32, polar: f32) -> Self { | ||
Self { | ||
azimuth: SignedAngle::degree(azimuth), | ||
polar: SignedAngle::degree(polar), | ||
} | ||
} | ||
|
||
#[allow(dead_code)] | ||
pub(crate) fn radian(azimuth: f32, polar: f32) -> Self { | ||
Self { | ||
azimuth: SignedAngle::radian(azimuth), | ||
polar: SignedAngle::radian(polar), | ||
} | ||
} | ||
|
||
/// Distance in a sphere with r = 0.5, result is in [0.0,1.0] | ||
pub(crate) fn distance(&self, other: &Self) -> f32 { | ||
let a = self.polar.sin() * other.polar.sin() * (self.azimuth - other.azimuth).cos(); | ||
let b = self.polar.cos() * other.polar.cos(); | ||
// Distance in unit sphere | ||
let dist = (2.0 - 2.0 * (a + b)).sqrt(); | ||
dist / 2.0 | ||
} | ||
|
||
/// Mirrors left/right, doesn't affect up/down or forward/backward | ||
pub(crate) fn x_mirror(&self) -> Self { | ||
Self { | ||
azimuth: self.azimuth.mirror(), | ||
polar: self.polar, | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
use super::SignedAngle; | ||
use crate::keypoints::Cartesian3d; | ||
|
||
impl Cartesian3d { | ||
/// The polar angle is measured against the y-axis, which goes from the | ||
/// ground to the sky. | ||
/// | ||
/// The polar angle is between 0° and +180°, with 0° pointing to | ||
/// the ground, 180° to the sky. | ||
/// | ||
/// Returned values are in radian, hence [0, PI] | ||
pub(crate) fn polar_angle(&self, other: Cartesian3d) -> SignedAngle { | ||
// only the sign of dy matters here, and we want it to grow down when we | ||
// use acos to compute the polar angle | ||
let dx = other.x - self.x; | ||
let dy = other.y - self.y; | ||
let dz = other.z - self.z; | ||
|
||
let r = (dx.powi(2) + dy.powi(2) + dz.powi(2)).sqrt(); | ||
if !r.is_normal() { | ||
// Handle vectors of lengths very close to zero, NaN, or infinity. | ||
// Returning 0° is as good as any other angle. | ||
return SignedAngle(0.0); | ||
} | ||
// note: potentially this could be computed more efficiently | ||
// note 2: what about Math.acos() instead of wasm ? | ||
SignedAngle::radian((dy / r).acos()) | ||
} | ||
|
||
/// The azimuth is the clock-wise angle to the negative z-axis. | ||
/// | ||
/// The azimuth is between -180° and 180°. Someone facing the camera has an | ||
/// azimuth of 0°, which is also known as north. | ||
/// | ||
/// Returned values are in radian, (-PI to PI]. | ||
/// | ||
/// Just like in cartography, east is +90° (PI/2) and west is -90° (-PI/2) | ||
/// for the dancer. However, in videos, the angles are therefore | ||
/// counter-clock-wise as seen by the camera. | ||
/// | ||
/// Note that in the keypoint coordinate system, the x-axis grows to the | ||
/// right. In a (non-mirrored) video this means we see the left arm of the | ||
/// dance (west) in the positive x-direction. Which is the opposite of how | ||
/// angles grow in our spherical coordinates. Also confusing, the positive | ||
/// z-axis faces south, not north. | ||
pub(crate) fn azimuth(&self, other: Cartesian3d) -> SignedAngle { | ||
// usually you should expect other - self, but we need to flip both signs | ||
let dz = self.z - other.z; | ||
let dx = self.x - other.x; | ||
let r = dx.hypot(dz); | ||
if !r.is_normal() { | ||
// Handle vectors of lengths very close to zero, NaN, or infinity. | ||
// Returning 0° is as good as any other angle. | ||
return SignedAngle(0.0); | ||
} | ||
// note: potentially this could be computed more efficiently, esp. the sign | ||
// note 2: what about Math.acos() instead of wasm ? | ||
SignedAngle(dx.signum() * (dz / r).acos()) | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
use super::*; | ||
use crate::test_utils::assert_angle_eq; | ||
|
||
#[test] | ||
fn test_cartesian_to_angle() { | ||
// input, azimuth, polar | ||
|
||
// in keypoint coordinates, the negative x direction is the right hand | ||
// of the dancer, which is the positive angle direction | ||
check_cartesian_to_angle(Cartesian3d::new(1.0, 0.0, 0.0), -90.0, 90.0); | ||
check_cartesian_to_angle(Cartesian3d::new(-1.0, 0.0, 0.0), 90.0, 90.0); | ||
|
||
// down is 0° (and camera y grows down) | ||
check_cartesian_to_angle(Cartesian3d::new(0.0, 1.0, 0.0), 0.0, 0.0); | ||
// up is 180° | ||
check_cartesian_to_angle(Cartesian3d::new(0.0, -1.0, 0.0), 0.0, 180.0); | ||
|
||
// away from the camera means south => azimuth = 180° | ||
check_cartesian_to_angle(Cartesian3d::new(0.0, 0.0, 1.0), 180.0, 90.0); | ||
// to the camera means north => azimuth = 0 | ||
check_cartesian_to_angle(Cartesian3d::new(0.0, 0.0, -1.0), 0.0, 90.0); | ||
} | ||
|
||
#[track_caller] | ||
fn check_cartesian_to_angle( | ||
cartesian: Cartesian3d, | ||
expected_azimuth: f32, | ||
expected_polar: f32, | ||
) { | ||
let origin = Cartesian3d::new(0.0, 0.0, 0.0); | ||
assert_angle_eq( | ||
SignedAngle::degree(expected_azimuth), | ||
origin.azimuth(cartesian), | ||
); | ||
assert_angle_eq( | ||
SignedAngle::degree(expected_polar), | ||
origin.polar_angle(cartesian), | ||
); | ||
} | ||
} |
Oops, something went wrong.