This repository contains an end-to-end pipeline for analyzing Tobii eye-tracking data. The project is structured into modular pipelines, each focused on a specific type of analysis. Together, these pipelines provide tools for data cleanup, sequence analysis, clustering, visualization, and machine learning.
tobii-eye-tracking-pipeline/
├── sequence-analysis/ # Sequence-based analysis (R)
│ ├── scripts/
│ ├── sample-data/
│ └── results/
├── cluster-analysis/ # Clustering gaze patterns (R)
│ ├── scripts/
│ ├── sample-data/
│ └── results/
├── visualizations/ # All visualization types (R)
│ ├── box-plots/
│ │ ├── scripts/
│ │ ├── sample-data/
│ │ └── results/
│ ├── heat-maps/
│ │ ├── scripts/
│ │ ├── sample-data/
│ │ └── results/
│ ├── coordinate-gaze-map/
│ │ ├── scripts/
│ │ ├── sample-data/
│ │ └── results/
│ ├── aoi-gaze-map/
│ │ ├── scripts/
│ │ ├── sample-data/
│ │ └── results/
├── machine-learning/ # Predictive modeling (Python)
│ ├── regression/
│ │ ├── scripts/
│ │ ├── sample-data/
│ │ └── results/
│ ├── classification/
│ │ ├── scripts/
│ │ ├── sample-data/
│ │ └── results/
└── README.md
Each analysis or visualization folder includes:
- scripts/: Core code for that stage of analysis
- sample-data/: Example inputs to demonstrate usage
- results/: Representative outputs (plots, metrics, exports)
-
R
- Data cleanup and preprocessing
- Sequence analysis
- Cluster analysis
- Data visualization (ggplot2, etc.)
-
Python
- Machine learning (scikit-learn, pandas, numpy, etc.)
- Model training and evaluation
-
Tobii Pro Studio / Tobii data exports
- Source format for raw eye-tracking data
-
Clone this repository:
git clone https://github.com/USERNAME/tobii-eye-tracking-analysis.git cd tobii-eye-tracking-analysis -
Explore each pipeline folder (e.g.
sequence-analysis/). Each contains:- R or Python scripts for analysis
- Sample datasets to test the workflow
- Example outputs for reference
-
Dependencies:
- R ≥ 4.0 (packages:
tidyverse,TraMineR,cluster,ggplot2) - Python ≥ 3.9 (packages:
scikit-learn,pandas,numpy,matplotlib)
- R ≥ 4.0 (packages:
This repository was developed to support the study "Improving Data Visualization Comprehension and Sensemaking: An empirical study", which is currently under review at an academic journal.