Data-driven analysis of surface drifters' trajectories to infer the predominant forcing mechanisms that drive their transport & predict their paths. Data: https://doi.org/10.5281/zenodo.14198921
Related publication: "Using surface drifters to characterise near-surface ocean dynamics in the southern North Sea: a data-driven approach"
Author: Jimena Medina Rubio (PhD Candidate)
├── LICENSE <- Open-source license
├── data
│ ├── external <- hydrodynamic
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- original drifter trajectories (available at https://zenodo.org/records/14198921)
│
├── models <- trained random forest & support vector regression models
│
│
├── references <- variable dictionaries & labels for plotting
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
└── ml_driven_drifter_data_analysis <- Source code for use in this project.
│
├── Plotting
│ ├── domain_figures.py
│ └── flipping_index.py
│
├──supplementary_material
│ ├── autocorrelation_times.py
│ ├── sensitivity_flipping_index.py
│ └── drifter_measurements_error.py
│
├── preprocessing_drifter_data.py <- data cleaning & formatting into xarray DataTree
│
├── processing_drifter_data.py <- calculation of velocities, residual velocities & flipping index
│
├── spectral_analysis_drifter_data.py <- FFT & Morlet analysis of drifter velocities
│
├── dataset.py <- interpolation of hydrodynamic & atmospheric data to drifters' coordinates
│
├── features.py <- transformation of interpolated variables to construct feature matrix
│
├── modeling
├── train.py <- functions to train models
├── fitting_models <- execution of training functions for each model
│ ├── linear_regression.py
│ ├── RandomForest.py
│ ├── SVR.py
│ ├── RandomForest_FI_fit.py
│ └── RandomForest_tests.py
│
├── model_agnostics.py
│ ├── PFI.py
│ ├── calculate_ALE.py
│ ├── model_agnostics_plots.py
│ └── ALE_plots.py
│
├── prediction
│ ├── prediction_functions.py
│ ├── predict_linear_regression.py
│ ├── prediction_ML.py
│ └── predict_linear_regression_sigmoid.py
│
├── statistics_prediction.py
│
├── decomposing_currents.py