Video2frame is also an easy-to-use tool to extract frames from video.
Forwchen's vid2frame tool is great, but I am always confused by their parameters. At the same time, I also want to add something I need to the tool.
So I re-wrote the code. And now, it is a new wheel. It is hard to make a PR since I changed the code style.
-
We recommend using conda to establish the environment. Just using
conda env create -f install/conda-environment.yml
You can also do it manually. This project relays on the following packages:
- Python
- FFmpeg
- Python packages (can be installed using
pip install -r install/pip-requirements.txt
)- h5py
- lmdb
- numpy
- easydict
- tqdm
-
The json file should like
{ "meta": { "class_num": 2, "class_name": [ "class_1", "class_2" ] }, "annotation": { "label1_abcdefg": { "path": "path/to/the/video/file_1.mp4", "class": 1 }, "label2_asdfghj": { "path": "path/to/the/video/file_2.mp4", "class": 2 } } }
-
-
Using the default options:
python video2frame.py dataset.json
-
Specify the output file name:
python video2frame.py dataset.json --db_name my_dataset
-
Using lmdb rather than hdf5:
python video2frame.py dataset.json --db_type LMDB
or
python video2frame.py dataset.json --db_name my_dataset.lmdb
-
Random clip 5 seconds:
python video2frame.py dataset.json --duration 5.0
-
Get 3 video clips with a length of 5 seconds:
python video2frame.py dataset.json --clips 3 --duration 5.0
-
Resize the frames to 320x240:
python video2frame.py dataset.json --resize_mode 1 --resize 320x240
-
Keep the aspect ration, and resize the shorter side to 320:
python video2frame.py dataset.json --resize_mode 2 --resize S320
-
Keep the aspect ration, and resize the longer side to 240:
python video2frame.py dataset.json --resize_mode 2 --resize L240
-
Extract 5 frames per second:
python video2frame.py dataset.json --fps 5
-
Uniformly sample 16 frames per video:
python video2frame.py dataset.json --sample_mode 1 --sample 16
-
Randomly sample 16 frames per video:
python video2frame.py dataset.json --sample_mode 2 --sample 16
-
Use 16 threads to speed-up:
python video2frame.py dataset.json --threads 16
-
Resize the frames to 320x240, extract one frame every two seconds, uniformly sample 32 frames per video, and using 20 threads:
python video2frame.py dataset.json \ --resize_mode 1 \ --resize 320x240 \ --fps 0.5 \ --sample_mode 1 \ --sample 32 \ --threads 20
usage: video2frame.py [-h] [--db_name DB_NAME] [--db_type {LMDB,HDF5,FILE,PKL}] [--tmp_dir TMP_DIR] [--clips CLIPS] [--duration DURATION] [--resize_mode {0,1,2}] [--resize RESIZE] [--fps FPS] [--sample_mode {0,1,2,3}] [--sample SAMPLE] [--threads THREADS] [--keep] annotation_file positional arguments: annotation_file The annotation file, in json format optional arguments: -h, --help show this help message and exit --db_name DB_NAME The database to store extracted frames (default: None) --db_type {LMDB,HDF5,FILE,PKL} Type of the database (default: HDF5) --tmp_dir TMP_DIR Temporary folder (default: /tmp) --clips CLIPS Num of clips per video (default: 1) --duration DURATION Length of each clip (default: -1) --resize_mode {0,1,2} Resize mode 0: Do not resize 1: 800x600: Resize to WxH 2: L600 or S600: keep the aspect ration and scale the longer/shorter side to s (default: 0) --resize RESIZE Parameter of resize mode (default: None) --fps FPS Sample the video at X fps (default: -1) --sample_mode {0,1,2,3} Frame sampling options 0: Keep all frames 1: Uniformly sample n frames 2: Randomly sample n continuous frames 3: Randomly sample n frames 4: Sample 1 frame every n frames (default: 0) --sample SAMPLE How many frames (default: None) --threads THREADS Number of threads (default: 0) --keep Do not delete temporary files at last (default: False)
-
-
video_folder_to_json.py
A json generator where the videos are arranged in this way:
root/swimming/xxx.mp4 root/swimming/xxy.avi root/swimming/xxz.flv root/dancing/123.mkv root/dancing/nsdf3.webm root/dancing/asd932_.mov
-
something_to_json.py
A json generator that converts the
Something-Something
dataset. -
ucf101_to_json.py
A json generator that converts the
UCF101
dataset.
-
pytorch_skvideo_dataset.py
Get frames using
skvideo
package, when training and evaluating. It is OKay when your batch size is small, and your CPUs are powerful enough. -
pytorch_lmdb_video_dataset.py
A PyTorch
Dataset
example to read LMDB dataset. -
pytorch_hdf5_video_dataset.py
A PyTorch
Dataset
example to read HDF5 dataset.ALWAYS ENSURE
num_workers=0
ORnum_workers=1
OF YOUR DATA LOADER. -
pytorch_pkl_video_dataset.py
A PyTorch
Dataset
example to read pickle dataset. -
pytorch_file_video_dataset.py
A PyTorch
Dataset
example to read image files dataset.