This repository contains various knowledge graph datasets and import tools.
The main project is located in the gtfs/
directory and provides a complete solution for importing GTFS (General Transit Feed Specification) data into Dgraph.
- Python 3.8+
- uv package manager
- Dgraph instance (local or remote)
- Configuration file with Dgraph connection details
# macOS/Linux
curl -LsSf https://astral.sh/uv/install.sh | sh
# Windows
powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
# Navigate to the GTFS project directory
cd gtfs
# Option 1: Use the automated setup script (recommended)
./setup_uv.sh
# Option 2: Manual setup
uv venv
source .venv/bin/activate # macOS/Linux
# or
.venv\Scripts\activate # Windows
uv pip install -e .
# Configure Dgraph connection
make config-example
# Edit config.env with your connection details
# Validate GTFS data
uvx run test_gtfs_data.py
# Import data to Dgraph
uvx run gtfs_import.py
# Explore with sample queries
uvx run sample_queries.py
gtfs/README_GTFS_Import.md
- Detailed usage instructionsgtfs/PROJECT_OVERVIEW.md
- Comprehensive project documentationgtfs/docker-compose.yml
- Dgraph setup configuration
- Complete GTFS data import into Dgraph
- Comprehensive transit knowledge graph
- Interactive query examples
- Docker-based Dgraph setup
- Data validation and analysis tools
See the gtfs/
directory for complete project details and implementation.