Skip to content

Commit

Permalink
Implement function Riemann Zeta (#2975, #2950)
Browse files Browse the repository at this point in the history
* Riemann Zeta Function

* Big Number zeta and added docs

* Original algorithm paper credited

* Update index.d.ts

* Update riemannZeta.js

* Update index.d.ts

* Renamed files to reflect zeta

* chore: make all the tests pass

* chore: refactor `zeta` (WIP)

* chore: reuse the validation logic of both number and BigNumber

* fix: type definitions of `zeta`

* fix: test the accuracy with numbers and BigNumbers (WIP)

* chore: make linter happy

* docs: fix example outputs

* docs: update history

* docs: update history

* docs: describe the limited precision of `zeta`

---------

Co-authored-by: BuildTools <[email protected]>
Co-authored-by: Anik Patel <[email protected]>
  • Loading branch information
3 people authored Aug 23, 2023
1 parent 3ab9bc1 commit e36f90e
Show file tree
Hide file tree
Showing 8 changed files with 272 additions and 1 deletion.
4 changes: 4 additions & 0 deletions HISTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,10 @@

# unpublished changes since 11.9.1

- Extend function `quantileSeq` with support for a `dimension` (#3002).
Thanks @dvd101x.
- Implement #2735: Support indexing with an array of booleans (#2994),
for example `a[[true, false, true]]` and `a[a > 2]`. Thanks @dvd101x.
- Fix #2990: `DenseMatrix` can mutate input arrays (#2991).


Expand Down
2 changes: 2 additions & 0 deletions src/expression/embeddedDocs/embeddedDocs.js
Original file line number Diff line number Diff line change
Expand Up @@ -184,6 +184,7 @@ import { setUnionDocs } from './function/set/setUnion.js'
import { zpk2tfDocs } from './function/signal/zpk2tf.js'
import { freqzDocs } from './function/signal/freqz.js'
import { erfDocs } from './function/special/erf.js'
import { zetaDocs } from './function/special/zeta.js'
import { madDocs } from './function/statistics/mad.js'
import { maxDocs } from './function/statistics/max.js'
import { meanDocs } from './function/statistics/mean.js'
Expand Down Expand Up @@ -527,6 +528,7 @@ export const embeddedDocs = {

// functions - special
erf: erfDocs,
zeta: zetaDocs,

// functions - statistics
cumsum: cumSumDocs,
Expand Down
14 changes: 14 additions & 0 deletions src/expression/embeddedDocs/function/special/zeta.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
export const zetaDocs = {
name: 'zeta',
category: 'Special',
syntax: [
'zeta(s)'
],
description: 'Compute the Riemann Zeta Function using an infinite series and Riemanns Functional Equation for the entire complex plane',
examples: [
'zeta(0.2)',
'zeta(-0.5)',
'zeta(4)'
],
seealso: []
}
1 change: 1 addition & 0 deletions src/factoriesAny.js
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,7 @@ export { createFft } from './function/matrix/fft.js'
export { createIfft } from './function/matrix/ifft.js'
export { createSolveODE } from './function/numeric/solveODE.js'
export { createErf } from './function/special/erf.js'
export { createZeta } from './function/special/zeta.js'
export { createMode } from './function/statistics/mode.js'
export { createProd } from './function/statistics/prod.js'
export { createFormat } from './function/string/format.js'
Expand Down
2 changes: 1 addition & 1 deletion src/factoriesNumber.js
Original file line number Diff line number Diff line change
Expand Up @@ -249,7 +249,7 @@ export { createUnequalNumber as createUnequal } from './function/relational/uneq

// special
export { createErf } from './function/special/erf.js'

export { createZeta } from './function/special/zeta.js'
// statistics
export { createMode } from './function/statistics/mode.js'
export { createProd } from './function/statistics/prod.js'
Expand Down
140 changes: 140 additions & 0 deletions src/function/special/zeta.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
import { factory } from '../../utils/factory.js'

const name = 'zeta'
const dependencies = ['typed', 'config', 'multiply', 'pow', 'divide', 'factorial', 'equal', 'smallerEq', 'isNegative', 'gamma', 'sin', 'subtract', 'add', '?Complex', '?BigNumber', 'pi']

export const createZeta = /* #__PURE__ */ factory(name, dependencies, ({ typed, config, multiply, pow, divide, factorial, equal, smallerEq, isNegative, gamma, sin, subtract, add, Complex, BigNumber, pi }) => {
/**
* Compute the Riemann Zeta function of a value using an infinite series for
* all of the complex plane using Riemann's Functional equation.
*
* Based off the paper by Xavier Gourdon and Pascal Sebah
* ( http://numbers.computation.free.fr/Constants/Miscellaneous/zetaevaluations.pdf )
*
* Implementation and slight modification by Anik Patel
*
* Note: the implementation is accurate up to about 6 digits.
*
* Syntax:
*
* math.zeta(n)
*
* Examples:
*
* math.zeta(5) // returns 1.0369277551433895
* math.zeta(-0.5) // returns -0.2078862249773449
* math.zeta(math.i) // returns 0.0033002236853253153 - 0.4181554491413212i
*
*
* @param {number | Complex | BigNumber} s A Real, Complex or BigNumber parameter to the Riemann Zeta Function
* @return {number | Complex | BigNumber} The Riemann Zeta of `s`
*/
return typed(name, {
number: (s) => zetaNumeric(s, value => value, () => 20),
BigNumber: (s) => zetaNumeric(
s,
value => new BigNumber(value),
() => {
// epsilon is for example 1e-12. Extract the positive exponent 12 from that
return Math.abs(Math.log10(config.epsilon))
}
),
Complex: zetaComplex
})

/**
* @param {number | BigNumber} s
* @param {(value: number) => number | BigNumber} createValue
* @param {(value: number | BigNumber | Complex) => number} determineDigits
* @returns {number | BigNumber}
*/
function zetaNumeric (s, createValue, determineDigits) {
if (equal(s, 0)) {
return createValue(-0.5)
}
if (equal(s, 1)) {
return createValue(NaN)
}
if (!isFinite(s)) {
return isNegative(s) ? createValue(NaN) : createValue(1)
}

return zeta(s, createValue, determineDigits, s => s)
}

/**
* @param {Complex} s
* @returns {Complex}
*/
function zetaComplex (s) {
if (s.re === 0 && s.im === 0) {
return new Complex(-0.5)
}
if (s.re === 1) {
return new Complex(NaN, NaN)
}
if (s.re === Infinity && s.im === 0) {
return new Complex(1)
}
if (s.im === Infinity || s.re === -Infinity) {
return new Complex(NaN, NaN)
}

return zeta(s, value => value, s => Math.round(1.3 * 15 + 0.9 * Math.abs(s.im)), s => s.re)
}

/**
* @param {number | BigNumber | Complex} s
* @param {(value: number) => number | BigNumber | Complex} createValue
* @param {(value: number | BigNumber | Complex) => number} determineDigits
* @param {(value: number | BigNumber | Complex) => number} getRe
* @returns {*|number}
*/
function zeta (s, createValue, determineDigits, getRe) {
const n = determineDigits(s)
if (getRe(s) > -(n - 1) / 2) {
return f(s, createValue(n), createValue)
} else {
// Function Equation for reflection to x < 1
let c = multiply(pow(2, s), pow(createValue(pi), subtract(s, 1)))
c = multiply(c, (sin(multiply(divide(createValue(pi), 2), s))))
c = multiply(c, gamma(subtract(1, s)))
return multiply(c, zeta(subtract(1, s), createValue, determineDigits, getRe))
}
}

/**
* Calculate a portion of the sum
* @param {number | BigNumber} k a positive integer
* @param {number | BigNumber} n a positive integer
* @return {number} the portion of the sum
**/
function d (k, n) {
let S = k
for (let j = k; smallerEq(j, n); j = add(j, 1)) {
const factor = divide(
multiply(factorial(add(n, subtract(j, 1))), pow(4, j)),
multiply(factorial(subtract(n, j)), factorial(multiply(2, j)))
)
S = add(S, factor)
}

return multiply(n, S)
}

/**
* Calculate the positive Riemann Zeta function
* @param {number} s a real or complex number with s.re > 1
* @param {number} n a positive integer
* @param {(number) => number | BigNumber | Complex} createValue
* @return {number} Riemann Zeta of s
**/
function f (s, n, createValue) {
const c = divide(1, multiply(d(createValue(0), n), subtract(1, pow(2, subtract(1, s)))))
let S = createValue(0)
for (let k = createValue(1); smallerEq(k, n); k = add(k, 1)) {
S = add(S, divide(multiply((-1) ** (k - 1), d(k, n)), pow(k, s)))
}
return multiply(c, S)
}
})
94 changes: 94 additions & 0 deletions test/unit-tests/function/special/zeta.test.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,94 @@
/* eslint-disable no-loss-of-precision */

import assert from 'assert'
import approx from '../../../../tools/approx.js'
import math from '../../../../src/defaultInstance.js'

const zeta = math.zeta
const epsilon = 1e-6 // FIXME: make zeta work with an epsilon of 1e-12

function approxEqual (a, b) {
approx.equal(a, b, epsilon)
}

describe('Riemann Zeta', function () {
it('should calculate the Riemann Zeta Function of a positive integer', function () {
assert.ok(isNaN(zeta(1)))
approxEqual(zeta(2), 1.6449340668482264)
approxEqual(zeta(3), 1.2020569031595942)
approxEqual(zeta(4), 1.0823232337111381)
approxEqual(zeta(5), 1.0369277551433699)
assert.strictEqual(zeta(Infinity), 1) // shouldn't stall
})

it('should calculate the Riemann Zeta Function of a non-positive integer', function () {
assert.strictEqual(zeta(0), -0.5)
approxEqual(zeta(-1), -1 / 12)
approxEqual(zeta(-2), 0)
approxEqual(zeta(-3), 1 / 120)
approxEqual(zeta(-13), -1 / 12)
assert.ok(isNaN(zeta(-Infinity)))
})

it('should calculate the Riemann Zeta Function of a BigNumber', function () {
const bigEpsilon = 1e-5 // FIXME: should work with for example an epsilon of 1e-64
const digits = Math.abs(Math.log10(bigEpsilon))

const math2 = math.create()
math2.config({ epsilon: bigEpsilon })

function bigApproxEqual (a, b) {
assert.strictEqual(
a.toSignificantDigits(digits).valueOf(),
b.toSignificantDigits(digits).valueOf(),
(a + ' ~= ' + b + ' (epsilon: ' + epsilon + ')')
)
}

bigApproxEqual(zeta(math2.bignumber(0)), math2.bignumber('-0.5'))
assert.ok(zeta(math2.bignumber(1)).isNaN())
bigApproxEqual(zeta(math2.bignumber(2)), math2.bignumber('1.6449340668482264364724151666460251892189499012067984377355582293'))
bigApproxEqual(zeta(math2.bignumber(-2)).add(1), math2.bignumber('1')) // we add 1 on both sides since we cannot easily compare zero
bigApproxEqual(zeta(math2.bignumber(20)), math2.bignumber('1.0000009539620338727961131520386834493459437941874105957500564898'))
bigApproxEqual(zeta(math2.bignumber(-21)), math2.bignumber('-281.4601449275362318840579710144927536231884057971014492753623188'))
bigApproxEqual(zeta(math2.bignumber(50)), math2.bignumber('1.0000000000000008881784210930815903096091386391386325608871464644'))
bigApproxEqual(zeta(math2.bignumber(-211)), math2.bignumber('2.7274887879083469529027229775609299175103750961568681644229e231'))
bigApproxEqual(zeta(math2.bignumber(100)), math2.bignumber('1.0000000000000000000000000000007888609052210118073520537827660414'))
bigApproxEqual(zeta(math2.bignumber(Infinity)), math2.bignumber('1')) // shouldn't stall
bigApproxEqual(zeta(math2.bignumber(-Infinity)), math2.bignumber(NaN)) // shouldn't stall
})

it('should calculate the Riemann Zeta Function of a rational number', function () {
approxEqual(zeta(0.125), -0.6327756234986952552935)
approxEqual(zeta(0.25), -0.81327840526189165652144)
approxEqual(zeta(0.5), -1.460354508809586812889499)
approxEqual(zeta(1.5), 2.61237534868548834334856756)
approxEqual(zeta(2.5), 1.34148725725091717975676969)
approxEqual(zeta(3.5), 1.12673386731705664642781249)
approxEqual(zeta(30.5), 1.00000000065854731257004465)
approxEqual(zeta(144.9), 1.0000000000000000000000000)

approxEqual(zeta(-0.5), -0.2078862249773545660173067)
approxEqual(zeta(-1.5), -0.0254852018898330359495429)
approxEqual(zeta(-2.5), 0.00851692877785033054235856)
})

it('should calculate the Riemann Zeta Function of an irrational number', function () {
approxEqual(zeta(Math.SQRT2), 3.0207376794860326682709)
approxEqual(zeta(Math.PI), 1.17624173838258275887215)
approxEqual(zeta(Math.E), 1.26900960433571711576556)

approxEqual(zeta(-Math.SQRT2), -0.0325059805396893552173896)
approxEqual(zeta(-Math.PI), 0.00744304047846672771406904635)
approxEqual(zeta(-Math.E), 0.00915987755942023170457566822)
})

it('should calculate the Riemann Zeta Function of a Complex number', function () {
approxEqual(zeta(math.complex(0, 1)), math.complex(0.00330022368532410287421711, -0.418155449141321676689274239))
approxEqual(zeta(math.complex(3, 2)), math.complex(0.97304196041894244856408189, -0.1476955930004537946298999860))
approxEqual(zeta(math.complex(-1.5, 3.7)), math.complex(0.244513626137832304395, 0.2077842378226353306923615))
approxEqual(zeta(math.complex(3.9, -5.2)), math.complex(0.952389583517691366229, -0.03276345793831000384775143962))
approxEqual(zeta(math.complex(-1.2, -9.3)), math.complex(2.209608454242663005234, -0.67864225792147162441259999407))
approxEqual(zeta(math.complex(0.5, 14.14)), math.complex(-0.00064921838659084911, 0.004134963322496717323762898714))
})
})
16 changes: 16 additions & 0 deletions types/index.d.ts
Original file line number Diff line number Diff line change
Expand Up @@ -2600,6 +2600,14 @@ declare namespace math {
*/
erf<T extends number | MathCollection>(x: T): NoLiteralType<T>

/**
* Compute the Riemann Zeta function of a value using an infinite series
* and Riemann's Functional equation.
* @param s A real, complex or BigNumber
* @returns The Riemann Zeta of s
*/
zeta<T extends number | Complex | BigNumber>(s: T): T

/*************************************************************************
* Statistics functions
************************************************************************/
Expand Down Expand Up @@ -5977,6 +5985,14 @@ declare namespace math {
this: MathJsChain<T>
): MathJsChain<NoLiteralType<T>>

/**
* Compute the Riemann Zeta function of a value using an infinite series
* and Riemann's Functional equation.
*/
zeta<T extends number | Complex | BigNumber>(
this: MathJsChain<T>
): MathJsChain<T>

/*************************************************************************
* Statistics functions
************************************************************************/
Expand Down

0 comments on commit e36f90e

Please sign in to comment.