-
Notifications
You must be signed in to change notification settings - Fork 2.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:karpathy/llama2.c
- Loading branch information
Showing
2 changed files
with
114 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
""" | ||
This script exports the Llama 2 weights in llama2c.bin format. | ||
""" | ||
import os | ||
import sys | ||
import struct | ||
from pathlib import Path | ||
import json | ||
|
||
import torch | ||
|
||
from model import precompute_freqs_cis | ||
|
||
|
||
def export(p, state_dict, filepath='model.bin'): | ||
"""export the model weights in fp32 into .bin file to be read from C""" | ||
f = open(filepath, 'wb') | ||
|
||
def serialize(key): | ||
print(f"writing {key}...") | ||
t = state_dict[key].contiguous().view(-1).type(torch.float32).numpy() | ||
f.write(memoryview(t)) | ||
del state_dict[key] | ||
|
||
# first write out the header | ||
hidden_dim = state_dict['model.layers.0.mlp.gate_proj.weight'].shape[0] | ||
p['vocab_size'] = 32000 | ||
p['max_seq_len'] = 2048 | ||
|
||
n_kv_heads = p.get('n_kv_heads') or p['n_heads'] | ||
header = struct.pack( | ||
'iiiiiii', | ||
p['dim'], hidden_dim, p['n_layers'], p['n_heads'], | ||
n_kv_heads, -p['vocab_size'], p['max_seq_len'] | ||
) | ||
# NOTE ABOVE: -ve vocab_size is indicating that the classifier weights are present | ||
# in the checkpoint and should be loaded. | ||
f.write(header) | ||
|
||
# next write out the embedding weights | ||
print("writing tok_embeddings...") | ||
serialize('model.embed_tokens.weight') | ||
|
||
# now all the layers | ||
# attention weights | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.input_layernorm.weight') | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.self_attn.q_proj.weight') | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.self_attn.k_proj.weight') | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.self_attn.v_proj.weight') | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.self_attn.o_proj.weight') | ||
# ffn weights | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.post_attention_layernorm.weight') | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.mlp.gate_proj.weight') | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.mlp.down_proj.weight') | ||
for i in range(p['n_layers']): serialize(f'model.layers.{i}.mlp.up_proj.weight') | ||
|
||
# final rmsnorm | ||
serialize('model.norm.weight') | ||
# freqs_cos, freqs_sin | ||
freqs_cos, freqs_sin = precompute_freqs_cis(p['dim'] // p['n_heads'], p['max_seq_len'] * 2) | ||
state_dict['freqs_cos'] = freqs_cos[:p['max_seq_len']] | ||
state_dict['freqs_sin'] = freqs_sin[:p['max_seq_len']] | ||
# check if this requires addtional conversion | ||
serialize('freqs_cos') | ||
serialize('freqs_sin') | ||
|
||
# finally write the output weights | ||
serialize('lm_head.weight') | ||
|
||
f.close() | ||
print(f"wrote {filepath}") | ||
|
||
|
||
def concat_weights(models): | ||
state_dict = {} | ||
for name in list(models[0]): | ||
tensors = [model[name] for model in models] | ||
if len(tensors) == 1 or len(tensors[0].shape) == 1: | ||
state_dict[name] = tensors[0] | ||
continue | ||
is_axis_1 = ( | ||
name.startswith('model.embed_tokens.weight') | ||
or name.endswith('.self_attn.o_proj.weight') | ||
or name.endswith('.mlp.down_proj.weight') | ||
) | ||
axis = 1 if is_axis_1 else 0 | ||
state_dict[name] = torch.cat(tensors, dim=axis) | ||
for model in models: | ||
del model[name] | ||
return state_dict | ||
|
||
|
||
def load_and_export(model_path, output_path): | ||
params_path = os.path.join(model_path, 'params.json') | ||
with open(params_path) as f: | ||
params = json.load(f) | ||
print(params) | ||
|
||
model_paths = sorted(list(Path(model_path).glob('consolidated.*.pth'))) | ||
models = [torch.load(p, map_location='cpu') for p in model_paths] | ||
state_dict = concat_weights(models) | ||
del models | ||
export(params, state_dict, output_path) | ||
|
||
|
||
if __name__ == '__main__': | ||
if len(sys.argv) == 1: | ||
print('[Llama model folder path] [output path]') | ||
exit() | ||
|
||
model_path = sys.argv[1] | ||
output_path = sys.argv[2] | ||
load_and_export(model_path, output_path) |