Skip to content

refactor: use simpler BaseModel for Sequential, compact #18

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 10, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[project]
name = "torcharc"
version = "2.1.1"
version = "2.1.2"
description = "Build PyTorch models by specifying architectures."
readme = "README.md"
requires-python = ">=3.12"
Expand Down
40 changes: 11 additions & 29 deletions torcharc/validator/modules.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
# Pydantic validation for modules spec
from pydantic import BaseModel, Field, RootModel, field_validator
from pydantic import BaseModel, ConfigDict, Field, RootModel, field_validator
from torch import nn


Expand Down Expand Up @@ -47,7 +47,7 @@ def build(self) -> nn.Module:
return cls(**kwargs)


class SequentialSpec(RootModel):
class SequentialSpec(BaseModel):
"""
Sequential spec where key = Sequential and value = list of NNSpecs.
E.g.
Expand All @@ -61,7 +61,9 @@ class SequentialSpec(RootModel):
out_features: 10
"""

root: dict[str, list[NNSpec]] = Field(
model_config = ConfigDict(extra="forbid")

Sequential: list[NNSpec] = Field(
description="Sequential module spec where value is a list of NNSpec.",
examples=[
{
Expand All @@ -74,20 +76,9 @@ class SequentialSpec(RootModel):
],
)

@field_validator("root", mode="before")
def is_single_key_dict(value: dict) -> dict:
return NNSpec.is_single_key_dict(value)

@field_validator("root", mode="before")
def key_is_sequential(value: dict) -> dict:
assert (
next(iter(value)) == "Sequential"
), "Key must be 'Sequential' if using SequentialSpec."
return value

def build(self) -> nn.Sequential:
"""Build nn.Sequential from sequential spec."""
nn_specs = next(iter(self.root.values()))
nn_specs = self.Sequential
return nn.Sequential(*[nn_spec.build() for nn_spec in nn_specs])


Expand Down Expand Up @@ -138,7 +129,7 @@ class CompactValueSpec(BaseModel):
)


class CompactSpec(RootModel):
class CompactSpec(BaseModel):
"""
Higher level compact spec that expands into Sequential spec. This is useful for architecture search.
Compact spec has the format:
Expand Down Expand Up @@ -174,7 +165,9 @@ class CompactSpec(RootModel):
p: 0.1
"""

root: dict[str, CompactValueSpec] = Field(
model_config = ConfigDict(extra="forbid")

compact: CompactValueSpec = Field(
description="Higher level compact spec that expands into Sequential spec.",
examples=[
{
Expand All @@ -201,17 +194,6 @@ class CompactSpec(RootModel):
],
)

@field_validator("root", mode="before")
def is_single_key_dict(value: dict) -> dict:
return NNSpec.is_single_key_dict(value)

@field_validator("root", mode="before")
def key_is_compact(value: dict) -> dict:
assert (
next(iter(value)) == "compact"
), "Key must be 'compact' if using CompactSpec."
return value

def __expand_spec(self, compact_layer: dict) -> list[dict]:
class_name = compact_layer["type"]
keys = compact_layer["keys"]
Expand All @@ -223,7 +205,7 @@ def __expand_spec(self, compact_layer: dict) -> list[dict]:
return nn_specs

def expand_to_sequential_spec(self) -> SequentialSpec:
compact_spec = next(iter(self.root.values())).model_dump()
compact_spec = self.compact.model_dump()
prelayer = compact_spec.get("prelayer")
postlayer = compact_spec.get("postlayer")
nn_specs = []
Expand Down
2 changes: 1 addition & 1 deletion uv.lock

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading