Skip to content

Fix "same" padding torch issue #20270

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 4 commits into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 8 additions & 4 deletions keras/src/backend/torch/nn.py
Original file line number Diff line number Diff line change
@@ -141,7 +141,7 @@ def _compute_padding_length(


def _apply_same_padding(
inputs, kernel_size, strides, operation_type, dilation_rate=1
inputs, kernel_size, strides, data_format, operation_type, dilation_rate=1
):
"""Apply same padding to the input tensor.

@@ -174,7 +174,10 @@ def _apply_same_padding(
spatial_shape[i], kernel_size[i], strides[i], dilation_rate[i]
)
mode = "constant"
padding = (padding_size,) + padding
if data_format == "channels_last":
padding = (padding_size,) + padding
else:
padding = padding + (padding_size,)

if all([left == right for left, right in padding]):
return inputs, [left for left, _ in padding]
@@ -252,7 +255,7 @@ def max_pool(
# Torch does not natively support `"same"` padding, we need to manually
# apply the right amount of padding to `inputs`.
inputs, padding = _apply_same_padding(
inputs, pool_size, strides, operation_type="pooling"
inputs, pool_size, strides, data_format, operation_type="pooling"
)
else:
padding = 0
@@ -312,7 +315,7 @@ def average_pool(
# Torch does not natively support `"same"` padding, we need to manually
# apply the right amount of padding to `inputs`.
inputs, padding = _apply_same_padding(
inputs, pool_size, strides, operation_type="pooling"
inputs, pool_size, strides, data_format, operation_type="pooling"
)
else:
padding = 0
@@ -377,6 +380,7 @@ def conv(
inputs,
kernel.shape[2:],
strides,
data_format,
operation_type="conv",
dilation_rate=dilation_rate,
)
1 change: 1 addition & 0 deletions keras/src/layers/pooling/average_pooling_test.py
Original file line number Diff line number Diff line change
@@ -174,6 +174,7 @@ def test_average_pooling1d(
(2, 1, "same", "channels_first", (3, 5, 5, 4), (3, 5, 5, 4)),
((2, 3), (2, 2), "valid", "channels_last", (3, 5, 5, 4), (3, 2, 2, 4)),
((2, 3), (2, 2), "same", "channels_last", (3, 5, 5, 4), (3, 3, 3, 4)),
((2, 3), (3, 3), "same", "channels_first", (3, 5, 5, 4), (3, 5, 2, 2)),
)
def test_average_pooling2d(
self,
12 changes: 12 additions & 0 deletions keras/src/ops/nn_test.py
Original file line number Diff line number Diff line change
@@ -1381,6 +1381,18 @@ def test_average_pool_same_padding(self):
knn.average_pool(x, 2, (2, 1), padding="same"),
np_avgpool2d(x, 2, (2, 1), padding="same", data_format=data_format),
)
# Test 2D average pooling with different pool size.
if data_format == "channels_last":
input_shape = (2, 10, 9, 3)
else:
input_shape = (2, 3, 10, 9)
x = np.arange(540, dtype=float).reshape(input_shape)
self.assertAllClose(
knn.average_pool(x, (2, 3), (3, 3), padding="same"),
np_avgpool2d(
x, (2, 3), (3, 3), padding="same", data_format=data_format
),
)

@parameterized.product(
strides=(1, 2, 3),