forked from InternLM/InternLM
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
kkscilife
committed
Jan 22, 2024
1 parent
abbf036
commit 135deca
Showing
2 changed files
with
85 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
name: basic-model-tests-daily | ||
on: | ||
pull_request: | ||
workflow_dispatch: | ||
schedule: | ||
- cron: '48 19 * * *' | ||
env: | ||
SLURM_PARTITION: llm_s | ||
|
||
jobs: | ||
HF_model: | ||
runs-on: [t_cluster] | ||
steps: | ||
- uses: actions/checkout@v3 | ||
|
||
- name: load_hf_model | ||
run: | | ||
conda create -n internlm-model-latest --clone internlm-model-base | ||
source activate internlm-model-latest | ||
pip install transformers | ||
pip install sentencepiece | ||
srun -p ${SLURM_PARTITION} --kill-on-bad-exit=1 --job-name=${GITHUB_RUN_ID}-${GITHUB_JOB} --gpus-per-task=2 pytest -s -v --color=yes ./tests/test_hf_model.py | ||
- name: clear_env | ||
run: | | ||
conda deactivate | ||
conda env remove --name internlm-model-latest |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
import pytest | ||
import torch | ||
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM | ||
|
||
prompts = [ | ||
"你好", | ||
"what's your name" | ||
] | ||
|
||
def assert_model(response): | ||
assert len(response) != 0 | ||
assert "user" not in response | ||
assert "bot" not in response | ||
assert "UNUSED_TOKEN" not in response | ||
|
||
|
||
class TestChat: | ||
@pytest.mark.parametrize("model_name", [ | ||
"internlm/internlm2-chat-7b", | ||
"internlm/internlm2-chat-7b-sft", | ||
]) | ||
def test_demo_default(self, model_name): | ||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | ||
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error. | ||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True).cuda() | ||
model = model.eval() | ||
for prompt in prompts: | ||
response, history = model.chat(tokenizer, prompt, history=[]) | ||
print(response) | ||
assert_model(response) | ||
|
||
for prompt in prompts: | ||
length = 0 | ||
for response, history in model.stream_chat(tokenizer, prompt, history=[]): | ||
print(response[length:], flush=True, end="") | ||
length = len(response) | ||
assert_model(response) | ||
|
||
|
||
class TestBase: | ||
@pytest.mark.parametrize("model_name", [ | ||
"internlm/internlm2-7b", | ||
"internlm/internlm2-base-7b", | ||
]) | ||
def test_demo_default(self, model_name): | ||
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | ||
# Set `torch_dtype=torch.float16` to load model in float16, otherwise it will be loaded as float32 and might cause OOM Error. | ||
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True).cuda() | ||
for prompt in prompts: | ||
inputs = tokenizer(prompt, return_tensors="pt") | ||
for k,v in inputs.items(): | ||
inputs[k] = v.cuda() | ||
gen_kwargs = {"max_length": 16280, "top_p": 10, "temperature": 1.0, "do_sample": True, "repetition_penalty": 1.0} | ||
output = model.generate(**inputs, **gen_kwargs) | ||
output = tokenizer.decode(output[0].tolist(), skip_special_tokens=True) | ||
print(output) | ||
assert_model(output) |