forked from InternLM/InternLM
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Tool]: Support converting InternLM2 to Llama format (InternLM#627)
Co-authored-by: x54-729 <[email protected]>
- Loading branch information
Showing
2 changed files
with
150 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
# InternLM2 tools | ||
|
||
## 1. Convert to LLaMA | ||
|
||
We offer the `convert2llama.py`, designed to seamlessly transform InternLM2 (HF format) into LLaMA (HF format). Here, HF refers to the format used by HuggingFace Transformers. | ||
|
||
### Usage | ||
``` | ||
python convert2llama.py --src /path/to/internlm2/ckpt --tgt /path/to/target/ckpt | ||
``` | ||
|
||
### Note | ||
|
||
While the `convert2llama.py` tool is available, we still advise opting for InternLM2 when practical, chiefly due to its superior efficiency. InternLM2, which is adapted from LLaMA, streamlines the process by integrating the `Wq`, `Wk`, `Wv` weight matrices into a single matrix `Wqkv`. This integration leads to approximately a **5%** speed increase during training. Given the substantial costs associated with pre-training, this efficiency boost can result in significant savings. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
# Copyright (c) InternLM. All rights reserved. | ||
import argparse | ||
import json | ||
import os | ||
|
||
import torch | ||
from einops import rearrange | ||
from tqdm import tqdm | ||
from transformers import AutoConfig, LlamaConfig, LlamaTokenizer | ||
|
||
|
||
def save_conifg(config, tgt): | ||
config_dict = config.to_dict() | ||
unnecessary_keys = [ | ||
"_name_or_path", | ||
"auto_map", | ||
"transformers_version", | ||
"model_type", | ||
"architectures", | ||
"tokenizer_class", | ||
"attn_implementation", | ||
] | ||
for k in unnecessary_keys: | ||
config_dict.pop(k, None) | ||
config_dict["attention_bias"] = config_dict.pop("bias") | ||
config_dict["architectures"] = ["LlamaForCausalLM"] | ||
llama_config = LlamaConfig(**config_dict) | ||
llama_config.save_pretrained(tgt) | ||
|
||
|
||
def convert(src, tgt): | ||
"""Convert InternLM2 huggingface checkpoints to Llama-style.""" | ||
|
||
print("Convert InternLM2 huggingface checkpoints to Llama...") | ||
|
||
config = AutoConfig.from_pretrained(src, trust_remote_code=True) | ||
assert not config.bias, "Cannot convert InternLM Model with bias to LLaMA." | ||
|
||
head_dim = config.hidden_size // config.num_attention_heads | ||
num_key_value_groups = config.num_attention_heads // config.num_key_value_heads | ||
|
||
# load index json file | ||
index_file = os.path.join(src, "pytorch_model.bin.index.json") | ||
if os.path.exists(index_file): | ||
with open(index_file) as fp: | ||
index_dict = json.load(fp) | ||
index_dict["weight_map"] = {} | ||
else: | ||
index_dict = None | ||
|
||
os.makedirs(tgt, exist_ok=True) | ||
for filename in tqdm(os.listdir(src)): | ||
if not filename.endswith(".bin"): | ||
continue | ||
states = torch.load(os.path.join(src, filename)) | ||
llama_states = {} | ||
for k, v in states.copy().items(): | ||
if "wqkv" in k: | ||
v = rearrange( | ||
v, | ||
"(h gs d) dim -> h gs d dim", | ||
gs=2 + num_key_value_groups, | ||
d=head_dim, | ||
) | ||
wq, wk, wv = torch.split(v, [num_key_value_groups, 1, 1], dim=1) | ||
wq = rearrange(wq, "h gs d dim -> (h gs d) dim") | ||
wk = rearrange(wk, "h gs d dim -> (h gs d) dim") | ||
wv = rearrange(wv, "h gs d dim -> (h gs d) dim") | ||
_prefix = k.split("attention")[0] | ||
wq_key = _prefix + "self_attn.q_proj.weight" | ||
wk_key = _prefix + "self_attn.k_proj.weight" | ||
wv_key = _prefix + "self_attn.v_proj.weight" | ||
llama_states[wq_key] = wq.clone() | ||
llama_states[wk_key] = wk.clone() | ||
llama_states[wv_key] = wv.clone() | ||
|
||
elif "attention.wo" in k: | ||
new_k = k.replace("attention.wo", "self_attn.o_proj") | ||
llama_states[new_k] = v | ||
elif "feed_forward.w1" in k: | ||
new_k = k.replace("feed_forward.w1", "mlp.gate_proj") | ||
llama_states[new_k] = v | ||
elif "feed_forward.w2" in k: | ||
new_k = k.replace("feed_forward.w2", "mlp.down_proj") | ||
llama_states[new_k] = v | ||
elif "feed_forward.w3" in k: | ||
new_k = k.replace("feed_forward.w3", "mlp.up_proj") | ||
llama_states[new_k] = v | ||
elif "attention_norm" in k: | ||
new_k = k.replace("attention_norm", "input_layernorm") | ||
llama_states[new_k] = v | ||
elif "ffn_norm" in k: | ||
new_k = k.replace("ffn_norm", "post_attention_layernorm") | ||
llama_states[new_k] = v | ||
elif "tok_embeddings" in k: | ||
llama_states["model.embed_tokens.weight"] = v | ||
elif "output" in k: | ||
llama_states["lm_head.weight"] = v | ||
else: | ||
llama_states[k] = v | ||
|
||
if index_dict is not None: | ||
for k in llama_states: | ||
index_dict["weight_map"][k] = filename | ||
print(f"Saving to {os.path.join(tgt, filename)}...", flush=True) | ||
torch.save(llama_states, os.path.join(tgt, filename)) | ||
del states | ||
|
||
print("Saving config and tokenizer...") | ||
# index.json | ||
if index_dict is not None: | ||
with open(os.path.join(tgt, "pytorch_model.bin.index.json"), "w") as fp: | ||
json.dump(index_dict, fp, indent=2) | ||
# tokenizer | ||
tokenizer = LlamaTokenizer.from_pretrained(src) | ||
tokenizer.init_kwargs.pop("auto_map", None) | ||
tokenizer.save_pretrained(tgt) | ||
# config | ||
save_conifg(config, tgt) | ||
print("Done!") | ||
|
||
|
||
def parse_args(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--src", type=str, help="Input folder") | ||
parser.add_argument("--tgt", type=str, help="Output folder") | ||
|
||
args = parser.parse_args() | ||
|
||
return args | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parse_args() | ||
|
||
convert(args.src, args.tgt) |