ArrayFire is a general-purpose tensor library that simplifies the process of software development for the parallel architectures found in CPUs, GPUs, and other hardware acceleration devices. The library serves users in every technical computing market.
Several of ArrayFire's benefits include:
- Hundreds of accelerated tensor computing functions, in the following areas:
- Array handling
- Computer vision
- Image processing
- Linear algebra
- Machine learning
- Standard math
- Signal Processing
- Statistics
- Vector algorithms
- Easy to use, stable, well-documented API
- Rigorous benchmarks and tests ensuring top performance and numerical accuracy
- Cross-platform compatibility with support for CUDA, OpenCL, and native CPU on Windows, Mac, and Linux
- Built-in visualization functions through Forge
- Commercially friendly open-source licensing
- Enterprise support from ArrayFire
ArrayFire provides software developers with a high-level abstraction of data
that resides on the accelerator, the af::array
object. Developers write code
that performs operations on ArrayFire arrays, which, in turn, are automatically
translated into near-optimal kernels that execute on the computational device.
ArrayFire runs on devices ranging from low-power mobile phones to high-power GPU-enabled supercomputers. ArrayFire runs on CPUs from all major vendors (Intel, AMD, ARM), GPUs from the prominent manufacturers (NVIDIA, AMD, and Qualcomm), as well as a variety of other accelerator devices on Windows, Mac, and Linux.
Instructions to install or to build ArrayFire from source can be found on the wiki.
Visit the Wikipedia page for a description of Conway's Game of Life.
static const float h_kernel[] = { 1, 1, 1, 1, 0, 1, 1, 1, 1 };
static const array kernel(3, 3, h_kernel, afHost);
array state = (randu(128, 128, f32) > 0.5).as(f32); // Init state
Window myWindow(256, 256);
while(!myWindow.close()) {
array nHood = convolve(state, kernel); // Obtain neighbors
array C0 = (nHood == 2); // Generate conditions for life
array C1 = (nHood == 3);
state = state * C0 + C1; // Update state
myWindow.image(state); // Display
}
The complete source code can be found here.
array predict(const array &X, const array &W) {
return sigmoid(matmul(X, W));
}
array train(const array &X, const array &Y,
double alpha = 0.1, double maxerr = 0.05,
int maxiter = 1000, bool verbose = false) {
array Weights = constant(0, X.dims(1), Y.dims(1));
for (int i = 0; i < maxiter; i++) {
array P = predict(X, Weights);
array err = Y - P;
if (mean<float>(abs(err) < maxerr) break;
Weights += alpha * matmulTN(X, err);
}
return Weights;
}
...
array Weights = train(train_feats, train_targets);
array test_outputs = predict(test_feats, Weights);
display_results<true>(test_images, test_outputs,
test_targets, 20);
The complete source code can be found here.
For more code examples, visit the examples/
directory.
You can find the complete documentation here.
Quick links:
ArrayFire has several official and community maintained language API's:
† Community maintained wrappers
In-Progress Wrappers
The community of ArrayFire developers invites you to build with us if you are interested and able to write top-performing tensor functions. Together we can fulfill The ArrayFire Mission for fast scientific computing for all.
Contributions of any kind are welcome! Please refer to the wiki and our Code of Conduct to learn more about how you can get involved with the ArrayFire Community through Sponsorship, Developer Commits, or Governance.
If you redistribute ArrayFire, please follow the terms established in the license. If you wish to cite ArrayFire in an academic publication, please use the following citation document.
ArrayFire development is funded by AccelerEyes LLC and several third parties, please see the list of acknowledgements for an expression of our gratitude.
- Slack Chat
- Google Groups
- ArrayFire Services: Consulting | Support | Training
The literal mark "ArrayFire" and ArrayFire logos are trademarks of AccelerEyes LLC (dba ArrayFire). If you wish to use either of these marks in your own project, please consult ArrayFire's Trademark Policy