Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add DataToDataFrame component for converting Data objects #6112

Open
wants to merge 9 commits into
base: main
Choose a base branch
from
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
from langflow.custom import Component
from langflow.io import DataInput, Output
from langflow.schema import Data, DataFrame


class DataToDataFrameComponent(Component):
display_name = "Data → DataFrame"
description = (
"Converts one or multiple Data objects into a DataFrame. "
"Each Data object corresponds to one row. Fields from `.data` become columns, "
"and the `.text` (if present) is placed in a 'text' column."
)
icon = "table"
name = "DataToDataFrame"

inputs = [
DataInput(
name="data_list",
display_name="Data or Data List",
info="One or multiple Data objects to transform into a DataFrame.",
is_list=True,
),
]

outputs = [
Output(
display_name="DataFrame",
name="dataframe",
method="build_dataframe",
info="A DataFrame built from each Data object's fields plus a 'text' column.",
),
]

def build_dataframe(self) -> DataFrame:
"""Builds a DataFrame from Data objects by combining their fields.

For each Data object:
- Merge item.data (dictionary) as columns
- If item.text is present, add 'text' column

Returns a DataFrame with one row per Data object.
"""
data_input = self.data_list

# If user passed a single Data, it might come in as a single object rather than a list
if not isinstance(data_input, list):
data_input = [data_input]

rows = []
for item in data_input:
if not isinstance(item, Data):
msg = f"Expected Data objects, got {type(item)} instead."
raise TypeError(msg)

# Start with a copy of item.data or an empty dict
row_dict = dict(item.data) if item.data else {}

# If the Data object has text, store it under 'text' col
text_val = item.get_text()
Comment on lines +45 to +59
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
# If user passed a single Data, it might come in as a single object rather than a list
if not isinstance(data_input, list):
data_input = [data_input]
rows = []
for item in data_input:
if not isinstance(item, Data):
msg = f"Expected Data objects, got {type(item)} instead."
raise TypeError(msg)
# Start with a copy of item.data or an empty dict
row_dict = dict(item.data) if item.data else {}
# If the Data object has text, store it under 'text' col
text_val = item.get_text()
# Ensure data_input is a list
# Use list comprehension to create rows more efficiently
rows = [
{
**(item.data if item.data else {}),
**({"text": item.get_text()} if item.get_text() else {}),
}
for item in data_input
if isinstance(item, Data)
]
# Verify all items are Data objects and raise TypeError if not
if len(rows) != len(data_input):
raise TypeError("All input items must be Data objects.")

if text_val:
row_dict["text"] = text_val

rows.append(row_dict)

# Build a DataFrame from these row dictionaries
df_result = DataFrame(rows)
self.status = df_result # store in self.status for logs
return df_result
127 changes: 127 additions & 0 deletions src/backend/tests/unit/components/processing/test_data_to_dataframe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
import pytest
from langflow.components.processing.data_to_dataframe import DataToDataFrameComponent
from langflow.schema import Data, DataFrame

from tests.base import ComponentTestBaseWithoutClient


class TestDataToDataFrameComponent(ComponentTestBaseWithoutClient):
@pytest.fixture
def component_class(self):
"""Return the component class to test."""
return DataToDataFrameComponent

@pytest.fixture
def default_kwargs(self):
"""Return the default kwargs for the component."""
return {
"data_list": [
Data(text="Row 1", data={"field1": "value1", "field2": 1}),
Data(text="Row 2", data={"field1": "value2", "field2": 2}),
]
}

@pytest.fixture
def file_names_mapping(self):
"""Return the file names mapping for different versions."""
# This is a new component, so we return an empty list
return []

def test_basic_setup(self, component_class, default_kwargs):
"""Test basic component initialization."""
component = component_class()
component.set_attributes(default_kwargs)
assert component.data_list == default_kwargs["data_list"]

def test_build_dataframe_basic(self, component_class, default_kwargs):
"""Test basic DataFrame construction."""
component = component_class()
component.set_attributes(default_kwargs)
result_df = component.build_dataframe()

assert isinstance(result_df, DataFrame)
assert len(result_df) == 2
assert list(result_df.columns) == ["field1", "field2", "text"]
assert result_df["text"].tolist() == ["Row 1", "Row 2"]
assert result_df["field1"].tolist() == ["value1", "value2"]
assert result_df["field2"].tolist() == [1, 2]

def test_single_data_input(self, component_class):
"""Test handling single Data object input."""
single_data = Data(text="Single Row", data={"field1": "value"})
component = component_class()
component.set_attributes({"data_list": single_data})

result_df = component.build_dataframe()

assert len(result_df) == 1
assert result_df["text"].iloc[0] == "Single Row"
assert result_df["field1"].iloc[0] == "value"

def test_empty_data_list(self, component_class):
"""Test behavior with empty data list."""
component = component_class()
component.set_attributes({"data_list": []})

result_df = component.build_dataframe()

assert len(result_df) == 0

def test_data_without_text(self, component_class):
"""Test handling Data objects without text field."""
data_without_text = [Data(data={"field1": "value1"}), Data(data={"field1": "value2"})]
component = component_class()
component.set_attributes({"data_list": data_without_text})

result_df = component.build_dataframe()

assert len(result_df) == 2
assert "text" not in result_df.columns
assert result_df["field1"].tolist() == ["value1", "value2"]

def test_data_without_data_dict(self, component_class):
"""Test handling Data objects without data dictionary."""
data_without_dict = [Data(text="Text 1"), Data(text="Text 2")]
component = component_class()
component.set_attributes({"data_list": data_without_dict})

result_df = component.build_dataframe()

assert len(result_df) == 2
assert list(result_df.columns) == ["text"]
assert result_df["text"].tolist() == ["Text 1", "Text 2"]

def test_mixed_data_fields(self, component_class):
"""Test handling Data objects with different fields."""
mixed_data = [
Data(text="Row 1", data={"field1": "value1", "field2": 1}),
Data(text="Row 2", data={"field1": "value2", "field3": "extra"}),
]
component = component_class()
component.set_attributes({"data_list": mixed_data})

result_df = component.build_dataframe()

assert len(result_df) == 2
assert set(result_df.columns) == {"field1", "field2", "field3", "text"}
assert result_df["field1"].tolist() == ["value1", "value2"]
assert result_df["field2"].iloc[1] != result_df["field2"].iloc[1] # Check for NaN using inequality
assert result_df["field3"].iloc[0] != result_df["field3"].iloc[0] # Check for NaN using inequality

def test_invalid_input_type(self, component_class):
"""Test error handling for invalid input types."""
invalid_data = [{"not": "a Data object"}]
component = component_class()
component.set_attributes({"data_list": invalid_data})

with pytest.raises(TypeError) as exc_info:
component.build_dataframe()
assert "Expected Data objects" in str(exc_info.value)

def test_status_update(self, component_class, default_kwargs):
"""Test that status is properly updated."""
component = component_class()
component.set_attributes(default_kwargs)
result = component.build_dataframe()

assert component.status is result # Status should be set to the DataFrame
Loading