Skip to content

Conversation

jp1924
Copy link
Contributor

@jp1924 jp1924 commented Jan 16, 2025

Summary

#514
Add Huggingface LLaVA to the Liger-kernel

transformer

pip install git+https://github.com/huggingface/transformers.git@5fa35344755d8d9c29610b57d175efd03776ae9e

Testing Done

huggingface-env
  • transformers: 4.49.0.dev0
  • huggingface_hub version: 0.26.2
  • Platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35
  • Python version: 3.10.12
  • Running in iPython ?: No
  • Running in notebook ?: No
  • Running in Google Colab ?: No
  • Running in Google Colab Enterprise ?: No
  • Token path ?: /root/.cache/huggingface/token
  • Has saved token ?: True
  • Who am I ?: jp1924
  • Configured git credential helpers:
  • FastAI: N/A
  • Tensorflow: N/A
  • Torch: 2.5.1+cu121
  • Jinja2: 3.1.4
  • Graphviz: N/A
  • keras: N/A
  • Pydot: N/A
  • Pillow: 11.0.0
  • hf_transfer: N/A
  • gradio: N/A
  • tensorboard: N/A
  • numpy: 2.1.3
  • pydantic: 2.9.2
  • aiohttp: 3.11.6
  • ENDPOINT: https://huggingface.co
  • HF_HUB_CACHE: /root/.cache/huggingface/hub
  • HF_ASSETS_CACHE: /root/.cache/huggingface/assets
  • HF_TOKEN_PATH: /root/.cache/huggingface/token
  • HF_STORED_TOKENS_PATH: /root/.cache/huggingface/stored_tokens
  • HF_HUB_OFFLINE: False
  • HF_HUB_DISABLE_TELEMETRY: False
  • HF_HUB_DISABLE_PROGRESS_BARS: None
  • HF_HUB_DISABLE_SYMLINKS_WARNING: False
  • HF_HUB_DISABLE_EXPERIMENTAL_WARNING: False
  • HF_HUB_DISABLE_IMPLICIT_TOKEN: False
  • HF_HUB_ENABLE_HF_TRANSFER: False
  • HF_HUB_ETAG_TIMEOUT: 10
  • HF_HUB_DOWNLOAD_TIMEOUT: 10
torch&hw-env

Collecting environment information...
PyTorch version: 2.5.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-124-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe

Nvidia driver version: 560.35.03
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 48
On-line CPU(s) list: 0-47
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Silver 4310 CPU @ 2.10GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 12
Socket(s): 2
Stepping: 6
CPU max MHz: 3300.0000
CPU min MHz: 800.0000
BogoMIPS: 4200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid fsrm md_clear pconfig flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 1.1 MiB (24 instances)
L1i cache: 768 KiB (24 instances)
L2 cache: 30 MiB (24 instances)
L3 cache: 36 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-11,24-35
NUMA node1 CPU(s): 12-23,36-47
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected

Versions of relevant libraries:
[pip3] numpy==2.1.3
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] torch==2.5.1+cu121
[pip3] torchvision==0.20.1+cu121
[pip3] triton==3.1.0
[conda] Could not collect

  • run make test to ensure correctness
  • run make checkstyle to ensure code style
  • run make test-convergence to ensure convergence

@jp1924
Copy link
Contributor Author

jp1924 commented Jan 16, 2025

make test-convergence log
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/test_mini_models.py
===================================================================================================================== test session starts ======================================================================================================================
platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0
rootdir: /root/Liger-Kernel
configfile: pyproject.toml
collecting ...
--------------------------------------------------------------------------------------------------------------------- live log collection ----------------------------------------------------------------------------------------------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 19 items

test/convergence/test_mini_models.py::test_mini_model[mini_llama3-32-0.0001-dtype0-1e-08-2e-05-0.0001-1e-05-0.005-1e-05] PASSED                                                                                                                          [  5%]
test/convergence/test_mini_models.py::test_mini_model[mini_llama3-32-0.0001-dtype1-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                                 [ 10%]
test/convergence/test_mini_models.py::test_mini_model[mini_llava-32-0.0001-dtype2-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                            [ 15%]
test/convergence/test_mini_models.py::test_mini_model[mini_llava-32-0.0001-dtype3-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                                  [ 21%]
test/convergence/test_mini_models.py::test_mini_model[mini_mllama-32-0.0001-dtype4-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                           [ 26%]
test/convergence/test_mini_models.py::test_mini_model[mini_mllama-32-0.0001-dtype5-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                                 [ 31%]
test/convergence/test_mini_models.py::test_mini_model[mini_qwen2-32-0.0001-dtype6-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                            [ 36%]
test/convergence/test_mini_models.py::test_mini_model[mini_qwen2-32-0.0001-dtype7-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                                  [ 42%]
test/convergence/test_mini_models.py::test_mini_model[mini_qwen2_vl-32-0.0001-dtype8-1e-05-0.1-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                           [ 47%]
test/convergence/test_mini_models.py::test_mini_model[mini_qwen2_vl-32-0.0001-dtype9-0.001-0.05-0.1-0.01-0.01-0.01] PASSED                                                                                                                               [ 52%]
test/convergence/test_mini_models.py::test_mini_model[mini_phi3-32-0.0001-dtype10-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                            [ 57%]
test/convergence/test_mini_models.py::test_mini_model[mini_phi3-32-0.0001-dtype11-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                                  [ 63%]
test/convergence/test_mini_models.py::test_mini_model[mini_mistral-32-0.0001-dtype12-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                         [ 68%]
test/convergence/test_mini_models.py::test_mini_model[mini_mistral-32-0.0001-dtype13-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                               [ 73%]
test/convergence/test_mini_models.py::test_mini_model[mini_gemma1-32-0.0001-dtype14-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                         [ 78%]
test/convergence/test_mini_models.py::test_mini_model[mini_gemma1-32-0.0001-dtype15-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                                [ 84%]
test/convergence/test_mini_models.py::test_mini_model[mini_gemma1.1-32-0.0001-dtype16-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                       [ 89%]
test/convergence/test_mini_models.py::test_mini_model[mini_gemma1.1-32-0.0001-dtype17-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                              [ 94%]
test/convergence/test_mini_models.py::test_mini_model[mini_gemma2-32-0.0001-dtype18-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                         [100%]

========================================================================================================== 19 passed, 2 warnings in 282.00s (0:04:41) ==========================================================================================================
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/test_mini_models_multimodal.py
===================================================================================================================== test session starts ======================================================================================================================
platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0
rootdir: /root/Liger-Kernel
configfile: pyproject.toml
collecting ...
--------------------------------------------------------------------------------------------------------------------- live log collection ----------------------------------------------------------------------------------------------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 6 items

test/convergence/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_qwen2_vl-32-0.0001-dtype0-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                   [ 16%]
test/convergence/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_qwen2_vl-32-0.0001-dtype1-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                         [ 33%]
test/convergence/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_mllama-32-0.0001-dtype2-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                     [ 50%]
test/convergence/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_mllama-32-0.0001-dtype3-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                           [ 66%]
test/convergence/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_llava-32-0.0001-dtype4-1e-08-1e-05-0.005-1e-05-0.005-1e-05]
------------------------------------------------------------------------------------------------------------------------ live log call -------------------------------------------------------------------------------------------------------------------------
WARNING  liger_kernel.transformers.monkey_patch:monkey_patch.py:166 Support for transformers versions < 4.46.1 will soon be discontinued due to issues with incorrect gradient accumulation.
 Please consider upgrading to avoid potential issues. See details: <https://github.com/huggingface/transformers/pull/34191>
PASSED                                                                                                                                                                                                                                                   [ 83%]
test/convergence/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_llava-32-0.0001-dtype5-0.001-0.01-0.1-0.01-0.01-0.01]
------------------------------------------------------------------------------------------------------------------------ live log call -------------------------------------------------------------------------------------------------------------------------
WARNING  liger_kernel.transformers.monkey_patch:monkey_patch.py:166 Support for transformers versions < 4.46.1 will soon be discontinued due to issues with incorrect gradient accumulation.
 Please consider upgrading to avoid potential issues. See details: <https://github.com/huggingface/transformers/pull/34191>
PASSED                                                                                                                                                                                                                                                   [100%]

========================================================================================================== 6 passed, 15 warnings in 216.30s (0:03:36) ==========================================================================================================
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/test_mini_models_with_logits.py
===================================================================================================================== test session starts ======================================================================================================================
platform linux -- Python 3.10.12, pytest-8.3.4, pluggy-1.5.0
rootdir: /root/Liger-Kernel
configfile: pyproject.toml
collecting ...
--------------------------------------------------------------------------------------------------------------------- live log collection ----------------------------------------------------------------------------------------------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 19 items

test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_llama3-32-0.0001-dtype0-1e-08-2e-05-0.0001-1e-05-0.005-1e-05] PASSED                                                                                                              [  5%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_llama3-32-0.0001-dtype1-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                     [ 10%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_llava-32-0.0001-dtype2-1e-08-1e-05-0.005-1e-05-0.005-1e-05]
------------------------------------------------------------------------------------------------------------------------ live log call -------------------------------------------------------------------------------------------------------------------------
WARNING  liger_kernel.transformers.monkey_patch:monkey_patch.py:166 Support for transformers versions < 4.46.1 will soon be discontinued due to issues with incorrect gradient accumulation.
 Please consider upgrading to avoid potential issues. See details: <https://github.com/huggingface/transformers/pull/34191>
PASSED                                                                                                                                                                                                                                                   [ 15%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_llava-32-0.0001-dtype3-0.001-0.01-0.1-0.01-0.01-0.01]
------------------------------------------------------------------------------------------------------------------------ live log call -------------------------------------------------------------------------------------------------------------------------
WARNING  liger_kernel.transformers.monkey_patch:monkey_patch.py:166 Support for transformers versions < 4.46.1 will soon be discontinued due to issues with incorrect gradient accumulation.
 Please consider upgrading to avoid potential issues. See details: <https://github.com/huggingface/transformers/pull/34191>
PASSED                                                                                                                                                                                                                                                   [ 21%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_mllama-32-0.0001-dtype4-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                               [ 26%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_mllama-32-0.0001-dtype5-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                     [ 31%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_qwen2-32-0.0001-dtype6-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                [ 36%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_qwen2-32-0.0001-dtype7-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                      [ 42%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_qwen2_vl-32-0.0001-dtype8-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                             [ 47%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_qwen2_vl-32-0.0001-dtype9-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                   [ 52%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_phi3-32-0.0001-dtype10-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                                [ 57%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_phi3-32-0.0001-dtype11-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                      [ 63%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_mistral-32-0.0001-dtype12-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED                                                                                                             [ 68%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_mistral-32-0.0001-dtype13-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                   [ 73%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_gemma1-32-0.0001-dtype14-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED                                                                                                             [ 78%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_gemma1-32-0.0001-dtype15-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                    [ 84%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_gemma1.1-32-0.0001-dtype16-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED                                                                                                           [ 89%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_gemma1.1-32-0.0001-dtype17-0.001-0.01-0.1-0.01-0.01-0.01] PASSED                                                                                                                  [ 94%]
test/convergence/test_mini_models_with_logits.py::test_mini_model[mini_gemma2-32-0.0001-dtype18-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED                                                                                                             [100%]

========================================================================================================== 19 passed, 2 warnings in 258.24s (0:04:18) ==========================================================================================================

@jp1924
Copy link
Contributor Author

jp1924 commented Jan 16, 2025

cc @Tcc0403 @ByronHsu

@Tcc0403
Copy link
Collaborator

Tcc0403 commented Jan 16, 2025

Good work! I'll take a look in few days.

@Tcc0403
Copy link
Collaborator

Tcc0403 commented Jan 18, 2025

There are multiple breaking changes in transformers recently. Convergence test couldn't pass with newer transformers version.

    def test_mini_model(
        model_name,
        num_steps,
        lr,
        dtype,
        loss_atol,
        loss_rtol,
        logits_atol,
        logits_rtol,
        param_atol,
        param_rtol,
    ):
        # Non-liger models should be initialized and tested first to avoid the module being overridden

>       expected_output = run_mini_model(model_name=model_name, num_steps=num_steps, dtype=dtype, lr=lr)

test/convergence/test_mini_models.py:773:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
test/convergence/test_mini_models.py:519: in run_mini_model
    output = model(**batch)
.venv/lib/python3.10/site-packages/torch/nn/modules/module.py:1736: in _wrapped_call_impl
    return self._call_impl(*args, **kwargs)
.venv/lib/python3.10/site-packages/torch/nn/modules/module.py:1747: in _call_impl
    return forward_call(*args, **kwargs)
.venv/lib/python3.10/site-packages/transformers/models/llava/modeling_llava.py:492: in forward
    inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = LlavaForConditionalGeneration(
  (vision_tower): CLIPVisionModel(
    (vision_model): CLIPVisionTransformer(
      (em...rotary_emb): LlamaRotaryEmbedding()
    )
    (lm_head): Linear(in_features=1024, out_features=32064, bias=False)
  )
)
image_features = None
inputs_embeds = tensor([[[ 1.1444e-05, -1.3367e-02,  4.3640e-03,  ...,  1.9043e-02,
           3.6377e-02, -8.7891e-03],
         [ 1....-02,
           5.7373e-03, -9.4604e-04]]], device='cuda:0', dtype=torch.bfloat16,
       grad_fn=<EmbeddingBackward0>)
input_ids = tensor([[    2,     2,     2,  ..., 16334, 20084, 28747],
        [    2,     2,     2,  ...,   528,  4085, 28723],
  ...,     2,     2,  ...,     2,     2,     1],
        [    2,     2,     2,  ...,     1,  1682, 28747]], device='cuda:0')
attention_mask = tensor([[0, 0, 0,  ..., 1, 1, 1],
        [0, 0, 0,  ..., 1, 1, 1],
        [0, 0, 0,  ..., 0, 0, 1],
        ...,
        [0, 0, 0,  ..., 1, 1, 1],
        [0, 0, 0,  ..., 0, 0, 1],
        [0, 0, 0,  ..., 1, 1, 1]], device='cuda:0')
labels = tensor([[    2,     2,     2,  ..., 16334, 20084, 28747],
        [    2,     2,     2,  ...,   528,  4085, 28723],
  ...,     2,     2,  ...,     2,     2,     1],
        [    2,     2,     2,  ...,     1,  1682, 28747]], device='cuda:0')

    def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
>       num_images, num_image_patches, embed_dim = image_features.shape
E       AttributeError: 'NoneType' object has no attribute 'shape'

.venv/lib/python3.10/site-packages/transformers/models/llava/modeling_llava.py:303: AttributeError
------------------------------------------------- Captured stdout call -------------------------------------------------
Liger kernel patches have been reverted.
=============================================== short test summary info ================================================
FAILED test/convergence/test_mini_models.py::test_mini_model[mini_llava-32-0.0001-dtype2-1e-08-1e-05-0.005-1e-05-0.005-1e-05] - AttributeError: 'NoneType' object has no attribute 'shape'
FAILED test/convergence/test_mini_models.py::test_mini_model[mini_llava-32-0.0001-dtype3-0.001-0.01-0.1-0.01-0.01-0.01] - AttributeError: 'NoneType' object has no attribute 'shape'

Environment:

❯ python -m liger_kernel.env_report
Environment Report:
-------------------
Operating System: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35
Python version: 3.10.12
Liger Kernel version: 0.5.2
PyTorch version: 2.5.1+cu124
CUDA version: 12.4
HIP(ROCm) version: Not available
Triton version: 3.1.0
Transformers version: 4.47.1
XPU version: XPU Not Available

Let's make a condition to handle different function signatures for older and newer transformers version, since both are still being used by users.

something like

if transformer_version < ...:
  ...
else:
  ...

@jp1924
Copy link
Contributor Author

jp1924 commented Jan 20, 2025

@Tcc0403
Ah, this is an error from transformers
You can see the exact cause in this link: huggingface/transformers#35526
However, this issue has been fixed in the latest version of transformers on GitHub, so to run it correctly, you will need to install from the source using pip in the transformers repo.

pip install git+https://github.com/huggingface/transformers.git@5fa35344755d8d9c29610b57d175efd03776ae9e

@jp1924
Copy link
Contributor Author

jp1924 commented Jan 20, 2025

That's why if you look at the hw&sw specification, my transformer is 4.49.0.dev instead of 4.48.0 due to this issue.

else:
kwargs["swiglu"] = True

kwargs["model"] = create_model(model_name)
Copy link
Collaborator

@Tcc0403 Tcc0403 Mar 16, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Here you create a model instance and patch on it. After if with_liger is True block, you create another model instance and assign it to model. So you are comparing "expected output from the first model after set_seed()", and "actual output from the second model after set_seed()". Besides that, you didn't pass the correct model instance when calling monkey_patch function either.

You can try what you did earlier, which is creating model before if with_liger is True block then add this instance to kwargs. In this way, I think both outputs are produced by the same RNG state model while passing the correct instance for llava monkey patch.

Copy link
Contributor Author

@jp1924 jp1924 Mar 23, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Tcc0403
sorry for late...

The reason for using kwargs["model"] = create_model(model_name) in this way is that the Liger kernel wasn’t applied properly, which led to this decision.

When the model was created before if with_liger is True and then the Liger kernel was applied, the model output looked like this:

LlamaForCausalLM(
  (model): LlamaModel(
    (embed_tokens): Embedding(32000, 1024)
    (layers): ModuleList(
      (0-3): 4 x LlamaDecoderLayer(
        (self_attn): LlamaAttention(
          (q_proj): Linear(in_features=1024, out_features=1024, bias=False)
          (k_proj): Linear(in_features=1024, out_features=256, bias=False)
          (v_proj): Linear(in_features=1024, out_features=256, bias=False)
          (o_proj): Linear(in_features=1024, out_features=1024, bias=False)
        )
        (mlp): LlamaMLP(
          (gate_proj): Linear(in_features=1024, out_features=2048, bias=False)
          (up_proj): Linear(in_features=1024, out_features=2048, bias=False)
          (down_proj): Linear(in_features=2048, out_features=1024, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): LlamaRMSNorm((1024,), eps=1e-05)
        (post_attention_layernorm): LlamaRMSNorm((1024,), eps=1e-05)
      )
    )
    (norm): LlamaRMSNorm((1024,), eps=1e-05)
    (rotary_emb): LlamaRotaryEmbedding()
  )
  (lm_head): Linear(in_features=1024, out_features=32000, bias=False)
)

From the output, it was evident that the Liger kernel wasn’t properly applied. When I debugged this in VSCode, it seemed to be applied to ce_forward and the repo embedding, but it wasn’t applied to RMSNorm.

On the other hand, when the model was executed using the test method currently available in the main branch, the output looked like this:

LlamaForCausalLM(
  (model): LlamaModel(
    (embed_tokens): Embedding(32000, 1024)
    (layers): ModuleList(
      (0-3): 4 x LlamaDecoderLayer(
        (self_attn): LlamaAttention(
          (q_proj): Linear(in_features=1024, out_features=1024, bias=False)
          (k_proj): Linear(in_features=1024, out_features=256, bias=False)
          (v_proj): Linear(in_features=1024, out_features=256, bias=False)
          (o_proj): Linear(in_features=1024, out_features=1024, bias=False)
        )
        (mlp): LigerSwiGLUMLP(
          (gate_proj): Linear(in_features=1024, out_features=2048, bias=False)
          (up_proj): Linear(in_features=1024, out_features=2048, bias=False)
          (down_proj): Linear(in_features=2048, out_features=1024, bias=False)
        )
        (input_layernorm): LigerRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
        (post_attention_layernorm): LigerRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
      )
    )
    (norm): LigerRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
    (rotary_emb): LlamaRotaryEmbedding()
  )
  (lm_head): Linear(in_features=1024, out_features=32000, bias=False)
)

In this case, it could be confirmed that the Liger kernel was properly applied to the model.

That’s why the method kwargs["model"] = create_model(model_name) was adopted.

So I'm looking into the cause of this now.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

When the model was created before if with_liger is True and then the Liger kernel was applied, the model output looked like this:

I tried putting instantiation before the if statement with the suggested change below

Suggested change
kwargs["model"] = create_model(model_name)
kwargs["model"] = model

This is what print(model) looks like:

LlamaForCausalLM(
  (model): LlamaModel(
    (embed_tokens): Embedding(32000, 1024)
    (layers): ModuleList(
      (0-3): 4 x LlamaDecoderLayer(
        (self_attn): LlamaAttention(
          (q_proj): Linear(in_features=1024, out_features=1024, bias=False)
          (k_proj): Linear(in_features=1024, out_features=256, bias=False)
          (v_proj): Linear(in_features=1024, out_features=256, bias=False)
          (o_proj): Linear(in_features=1024, out_features=1024, bias=False)
        )
        (mlp): LlamaMLP(
          (gate_proj): Linear(in_features=1024, out_features=2048, bias=False)
          (up_proj): Linear(in_features=1024, out_features=2048, bias=False)
          (down_proj): Linear(in_features=2048, out_features=1024, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): LlamaRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
        (post_attention_layernorm): LlamaRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
      )
    )
    (norm): LlamaRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
    (rotary_emb): LlamaRotaryEmbedding()
  )
  (lm_head): Linear(in_features=1024, out_features=32000, bias=False)
)

Despite the module name of LlamaRMSNorm remaining unchanged, its forward and extra_repr methods are actually binded to LigerRMSNorm's methods, as in_place is what we define in LigerRMSNorm.extra_repr(). Because the patch is done by overiding these two specific methods only without touching other methods, the class name isn't shown correctly.

It can be another PR for fixing repr of modules when patching model instances. For now, as long as we can ensure the patch is actually applied, it's fine to leave it broken.

Copy link
Contributor Author

@jp1924 jp1924 Mar 24, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@Tcc0403

I tried putting the instantiation before the if statement with the suggested change below.

I reverted back to kwargs["model"] = model, but an error occurs during the PailGemma convergence test.

When running the PailGemma test individually, no error occurs, but when running it alongside other tests, an error does occur.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
test/convergence/fp32/test_mini_models_multimodal.py:586: in run_mini_model_multimodal
    MINI_MODEL_SETUPS[model_name].liger_kernel_patch_func(**kwargs)
src/liger_kernel/transformers/monkey_patch.py:748: in apply_liger_kernel_to_paligemma
    _patch_layer_norm_module(vision_tower.vision_model.post_layernorm)
src/liger_kernel/transformers/monkey_patch.py:61: in _patch_layer_norm_module
    module.hidden_size = module.normalized_shape
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = LigerLayerNorm(1152, eps=1e-06), name = 'normalized_shape'

    def __getattr__(self, name: str) -> Any:
        if "_parameters" in self.__dict__:
            _parameters = self.__dict__["_parameters"]
            if name in _parameters:
                return _parameters[name]
        if "_buffers" in self.__dict__:
            _buffers = self.__dict__["_buffers"]
            if name in _buffers:
                return _buffers[name]
        if "_modules" in self.__dict__:
            modules = self.__dict__["_modules"]
            if name in modules:
                return modules[name]
>       raise AttributeError(
            f"'{type(self).__name__}' object has no attribute '{name}'"
        )
E       AttributeError: 'LigerLayerNorm' object has no attribute 'normalized_shape'

../.venv/lib/python3.10/site-packages/torch/nn/modules/module.py:1931: AttributeError

It seems that the error is happening in the layer norm, so it might be necessary to redefine or adjust the revert function related to layer_norm.

For now, when kwargs["model"] = model was added, LLaVa passed successfully.

Below is the print(model) output for PailGemma before applying the Liger kernel:

PaliGemmaForConditionalGeneration(
  (vision_tower): SiglipVisionModel(
    (vision_model): SiglipVisionTransformer(
      (embeddings): SiglipVisionEmbeddings(
        (patch_embedding): Conv2d(3, 1152, kernel_size=(14, 14), stride=(14, 14), padding=valid)
        (position_embedding): Embedding(256, 1152)
      )
      (encoder): SiglipEncoder(
        (layers): ModuleList(
          (0-3): 4 x SiglipEncoderLayer(
            (self_attn): SiglipAttention(
              (k_proj): Linear(in_features=1152, out_features=1152, bias=True)
              (v_proj): Linear(in_features=1152, out_features=1152, bias=True)
              (q_proj): Linear(in_features=1152, out_features=1152, bias=True)
              (out_proj): Linear(in_features=1152, out_features=1152, bias=True)
            )
            (layer_norm1): LigerLayerNorm(1152, eps=1e-06)
            (mlp): SiglipMLP(
              (activation_fn): PytorchGELUTanh()
              (fc1): Linear(in_features=1152, out_features=2048, bias=True)
              (fc2): Linear(in_features=2048, out_features=1152, bias=True)
            )
            (layer_norm2): LigerLayerNorm(1152, eps=1e-06)
          )
        )
      )
      (post_layernorm): LigerLayerNorm(1152, eps=1e-06)
      (head): SiglipMultiheadAttentionPoolingHead(
        (attention): MultiheadAttention(
          (out_proj): NonDynamicallyQuantizableLinear(in_features=1152, out_features=1152, bias=True)
        )
        (layernorm): LigerLayerNorm(1152, eps=1e-06)
        (mlp): SiglipMLP(
          (activation_fn): PytorchGELUTanh()
          (fc1): Linear(in_features=1152, out_features=2048, bias=True)
          (fc2): Linear(in_features=2048, out_features=1152, bias=True)
        )
      )
    )
  )
  (multi_modal_projector): PaliGemmaMultiModalProjector(
    (linear): Linear(in_features=1152, out_features=1024, bias=True)
  )
  (language_model): Gemma2ForCausalLM(
    (model): Gemma2Model(
      (embed_tokens): Embedding(32000, 1024, padding_idx=0)
      (layers): ModuleList(
        (0-3): 4 x Gemma2DecoderLayer(
          (self_attn): Gemma2Attention(
            (q_proj): Linear(in_features=1024, out_features=1024, bias=False)
            (k_proj): Linear(in_features=1024, out_features=1024, bias=False)
            (v_proj): Linear(in_features=1024, out_features=1024, bias=False)
            (o_proj): Linear(in_features=1024, out_features=1024, bias=False)
          )
          (mlp): Gemma2MLP(
            (gate_proj): Linear(in_features=1024, out_features=2048, bias=False)
            (up_proj): Linear(in_features=1024, out_features=2048, bias=False)
            (down_proj): Linear(in_features=2048, out_features=1024, bias=False)
            (act_fn): PytorchGELUTanh()
          )
          (input_layernorm): Gemma2RMSNorm((1024,), eps=1e-06)
          (post_attention_layernorm): Gemma2RMSNorm((1024,), eps=1e-06)
          (pre_feedforward_layernorm): Gemma2RMSNorm((1024,), eps=1e-06)
          (post_feedforward_layernorm): Gemma2RMSNorm((1024,), eps=1e-06)
        )
      )
      (norm): Gemma2RMSNorm((1024,), eps=1e-06)
      (rotary_emb): Gemma2RotaryEmbedding()
    )
    (lm_head): Linear(in_features=1024, out_features=32000, bias=False)
  )
)

@Tcc0403
Copy link
Collaborator

Tcc0403 commented Mar 24, 2025

It seems to be the attribute discrepency between LigerLayerNorm and nn.LayerNorm.

def _patch_layer_norm_module(module, eps=1e-6):
module.variance_epsilon = getattr(module, "variance_epsilon", None) or getattr(module, "eps", None) or eps
module.hidden_size = module.normalized_shape
_bind_method_to_module(module, "forward", LigerLayerNorm.forward)
_bind_method_to_module(module, "extra_repr", LigerLayerNorm.extra_repr)

change this line

module.hidden_size = module.normalized_shape 

to

# Try to get hidden_size in case torch.nn.LayerNorm is already patched to LigerLayerNorm
module.hidden_size = getattr(module, "hidden_size", None) or getattr(module, "normalized_shape", None)

@jp1924 jp1924 mentioned this pull request Mar 25, 2025
3 tasks
@eljandoubi
Copy link
Contributor

@jp1924 @Tcc0403 I think the Siglip (Paligemma) patch needs to be reverted somewhere.

@jp1924
Copy link
Contributor Author

jp1924 commented Mar 30, 2025

@Tcc0403

I have a suggestion. Instead of passing kwargs['model'] = model in the test, how about doing something like this:

+        if "llava" in model_name:
+            apply_liger_kernel_to_llama(**kwargs)
-        kwargs['model'] = model

and directly calling monkey_patch to apply the patch?

The main reason why many bugs have occurred while performing this PR seems to be that there was no dedicated test for applying the liger-kernel patch to the model instance during the convergence test.

From my understanding, there are two main methods to apply the liger-kernel patch:

  1. Before creating the model instance, directly modify the classes of the modules that make up the model so that the liger-kernel is applied to the created model instance.
  2. Modify the forward and repr of an already created model instance to apply the liger-kernel.

The existing convergence tests only tested the first method and did not test the second method.

However, while switching to the second method of testing to test llava, these issues arose.

I believe it is necessary to add convergence tests for the second method.
However, I think this goes far beyond the scope of this PR.

Therefore, I suggest we address this issue in a future PR and, for now, modify it as I proposed to wrap up the current PR.

What’s your opinion?

@Tcc0403
Copy link
Collaborator

Tcc0403 commented Mar 30, 2025

From my understanding, there are two main methods to apply the liger-kernel patch:

  1. Before creating the model instance, directly modify the classes of the modules that make up the model so that the liger-kernel is applied to the created model instance.
  2. Modify the forward and repr of an already created model instance to apply the liger-kernel.

The existing convergence tests only tested the first method and did not test the second method.

Yes, that's how liger handles monkey patch and convergence tests.

I believe it is necessary to add convergence tests for the second method.
However, I think this goes far beyond the scope of this PR.

Therefore, I suggest we address this issue in a future PR and, for now, modify it as I proposed to wrap up the current PR.

Totally agreed. I thought it was just a simple fix at first, but it seems that current revert functions have lots of limitations.

I have a suggestion. Instead of passing kwargs['model'] = model in the test, how about doing something like this:

+        if "llava" in model_name:
+            apply_liger_kernel_to_llama(**kwargs)
-        kwargs['model'] = model

and directly calling monkey_patch to apply the patch?

Makes sense to me. It seems to be the best walkaround we can have for now.

Let's take this approach. Make sure to add importlib.reload("modeling_llama") in the revert function.

@jp1924
Copy link
Contributor Author

jp1924 commented Mar 30, 2025

Alright! When I added it like that, the tests passed separately, and the patch was successfully applied to the model as well.

convergence-test log
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/fp32/test_mini_models.py
============================= test session starts ==============================
platform linux -- Python 3.10.12, pytest-8.3.5, pluggy-1.5.0
rootdir: /root/workspace/jp-liger
configfile: pyproject.toml

----------------------------- live log collection ------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 13 items

test/convergence/fp32/test_mini_models.py::test_mini_model[mini_llama3-32-0.0001-dtype0-1e-08-2e-05-0.0001-1e-05-0.005-1e-05] PASSED [  7%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_llava-32-0.0001-dtype1-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 15%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_mllama-32-0.0001-dtype2-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 23%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_qwen2-32-0.0001-dtype3-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 30%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_qwen2_vl-32-0.0001-dtype4-1e-05-0.1-0.005-1e-05-0.005-1e-05] PASSED [ 38%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_qwen2_5_vl-32-0.0001-dtype5-1e-05-0.1-0.005-1e-05-0.005-1e-05] PASSED [ 46%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_olmo2-32-0.0001-dtype6-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 53%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_phi3-32-0.0001-dtype7-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 61%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_mistral-32-0.0001-dtype8-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 69%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_gemma1-32-0.0001-dtype9-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED [ 76%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_gemma1.1-32-0.0001-dtype10-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED [ 84%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_gemma2-32-0.0001-dtype11-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED [ 92%]
test/convergence/fp32/test_mini_models.py::test_mini_model[mini_granite3-32-0.0001-dtype12-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED [100%]

================== 13 passed, 1 warning in 131.85s (0:02:11) ===================
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/fp32/test_mini_models_multimodal.py
============================= test session starts ==============================
platform linux -- Python 3.10.12, pytest-8.3.5, pluggy-1.5.0
rootdir: /root/workspace/jp-liger
configfile: pyproject.toml

----------------------------- live log collection ------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 6 items

test/convergence/fp32/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_qwen2_vl-32-0.0001-dtype0-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 16%]
test/convergence/fp32/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_llava-32-0.0001-dtype1-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 33%]
test/convergence/fp32/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_qwen2_5_vl-32-0.0001-dtype2-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 50%]
test/convergence/fp32/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_mllama-32-0.0001-dtype3-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 66%]
test/convergence/fp32/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_paligemma-32-0.0001-dtype4-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 83%]
test/convergence/fp32/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_paligemma2-32-0.0001-dtype5-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [100%]

================== 6 passed, 7 warnings in 134.07s (0:02:14) ===================
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/fp32/test_mini_models_with_logits.py
============================= test session starts ==============================
platform linux -- Python 3.10.12, pytest-8.3.5, pluggy-1.5.0
rootdir: /root/workspace/jp-liger
configfile: pyproject.toml

----------------------------- live log collection ------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 13 items

test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_llama3-32-0.0001-dtype0-1e-08-2e-05-0.0001-1e-05-0.005-1e-05] PASSED [  7%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_llava-32-0.0001-dtype1-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 15%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_mllama-32-0.0001-dtype2-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 23%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_qwen2-32-0.0001-dtype3-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 30%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_qwen2_vl-32-0.0001-dtype4-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 38%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_qwen2_5_vl-32-0.0001-dtype5-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 46%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_olmo2-32-0.0001-dtype6-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 53%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_phi3-32-0.0001-dtype7-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 61%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_mistral-32-0.0001-dtype8-1e-08-1e-05-0.005-1e-05-0.005-1e-05] PASSED [ 69%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_gemma1-32-0.0001-dtype9-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED [ 76%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_gemma1.1-32-0.0001-dtype10-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED [ 84%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_gemma2-32-0.0001-dtype11-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED [ 92%]
test/convergence/fp32/test_mini_models_with_logits.py::test_mini_model[mini_granite3-32-0.0001-dtype12-1e-08-0.0001-0.005-1e-05-0.005-1e-05] PASSED [100%]

================== 13 passed, 1 warning in 129.45s (0:02:09) ===================
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/bf16/test_mini_models.py
============================= test session starts ==============================
platform linux -- Python 3.10.12, pytest-8.3.5, pluggy-1.5.0
rootdir: /root/workspace/jp-liger
configfile: pyproject.toml

----------------------------- live log collection ------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 12 items

test/convergence/bf16/test_mini_models.py::test_mini_model[mini_llama3-32-0.0001-dtype0-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [  8%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_llava-32-0.0001-dtype1-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 16%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_granite3-32-0.0001-dtype2-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 25%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_mllama-32-0.0001-dtype3-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 33%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_qwen2-32-0.0001-dtype4-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 41%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_qwen2_vl-32-0.0001-dtype5-0.001-0.05-0.1-0.01-0.01-0.01] PASSED [ 50%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_qwen2_5_vl-32-0.0001-dtype6-0.001-0.05-0.1-0.01-0.01-0.01] PASSED [ 58%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_phi3-32-0.0001-dtype7-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 66%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_mistral-32-0.0001-dtype8-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 75%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_olmo2-32-0.0001-dtype9-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 83%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_gemma1-32-0.0001-dtype10-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 91%]
test/convergence/bf16/test_mini_models.py::test_mini_model[mini_gemma1.1-32-0.0001-dtype11-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [100%]

================== 12 passed, 1 warning in 107.01s (0:01:47) ===================
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/bf16/test_mini_models_multimodal.py
============================= test session starts ==============================
platform linux -- Python 3.10.12, pytest-8.3.5, pluggy-1.5.0
rootdir: /root/workspace/jp-liger
configfile: pyproject.toml

----------------------------- live log collection ------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 6 items

test/convergence/bf16/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_qwen2_vl-32-0.0001-dtype0-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 16%]
test/convergence/bf16/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_llava-32-0.0001-dtype1-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 33%]
test/convergence/bf16/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_qwen2_5_vl-32-0.0001-dtype2-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 50%]
test/convergence/bf16/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_mllama-32-0.0001-dtype3-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 66%]
test/convergence/bf16/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_paligemma-32-0.0001-dtype4-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 83%]
test/convergence/bf16/test_mini_models_multimodal.py::test_mini_model_multimodal[mini_paligemma2-32-0.0001-dtype5-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [100%]

================== 6 passed, 11 warnings in 103.80s (0:01:43) ==================
HF_DATASETS_OFFLINE=1 python -m pytest --disable-warnings test/convergence/bf16/test_mini_models_with_logits.py
============================= test session starts ==============================
platform linux -- Python 3.10.12, pytest-8.3.5, pluggy-1.5.0
rootdir: /root/workspace/jp-liger
configfile: pyproject.toml

----------------------------- live log collection ------------------------------
INFO     datasets:config.py:54 PyTorch version 2.5.1+cu121 available.
collected 12 items

test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_llama3-32-0.0001-dtype0-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [  8%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_llava-32-0.0001-dtype1-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 16%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_granite3-32-0.0001-dtype2-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 25%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_mllama-32-0.0001-dtype3-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 33%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_qwen2-32-0.0001-dtype4-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 41%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_qwen2_vl-32-0.0001-dtype5-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 50%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_qwen2_5_vl-32-0.0001-dtype6-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 58%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_phi3-32-0.0001-dtype7-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 66%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_mistral-32-0.0001-dtype8-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 75%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_gemma1-32-0.0001-dtype9-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 83%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_gemma1.1-32-0.0001-dtype10-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [ 91%]
test/convergence/bf16/test_mini_models_with_logits.py::test_mini_model[mini_olmo2-32-0.0001-dtype11-0.001-0.01-0.1-0.01-0.01-0.01] PASSED [100%]

=================== 12 passed, 1 warning in 97.29s (0:01:37) ===================
model print
LlavaForConditionalGeneration(
  (vision_tower): CLIPVisionModel(
    (vision_model): CLIPVisionTransformer(
      (embeddings): CLIPVisionEmbeddings(
        (patch_embedding): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14), bias=False)
        (position_embedding): Embedding(577, 1024)
      )
      (pre_layrnorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
      (encoder): CLIPEncoder(
        (layers): ModuleList(
          (0-23): 24 x CLIPEncoderLayer(
            (self_attn): CLIPSdpaAttention(
              (k_proj): Linear(in_features=1024, out_features=1024, bias=True)
              (v_proj): Linear(in_features=1024, out_features=1024, bias=True)
              (q_proj): Linear(in_features=1024, out_features=1024, bias=True)
              (out_proj): Linear(in_features=1024, out_features=1024, bias=True)
            )
            (layer_norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
            (mlp): CLIPMLP(
              (activation_fn): QuickGELUActivation()
              (fc1): Linear(in_features=1024, out_features=4096, bias=True)
              (fc2): Linear(in_features=4096, out_features=1024, bias=True)
            )
            (layer_norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
          )
        )
      )
      (post_layernorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
    )
  )
  (multi_modal_projector): LlavaMultiModalProjector(
    (linear_1): Linear(in_features=1024, out_features=1024, bias=True)
    (act): GELUActivation()
    (linear_2): Linear(in_features=1024, out_features=1024, bias=True)
  )
  (language_model): LlamaForCausalLM(
    (model): LlamaModel(
      (embed_tokens): Embedding(32064, 1024)
      (layers): ModuleList(
        (0-3): 4 x LlamaDecoderLayer(
          (self_attn): LlamaAttention(
            (q_proj): Linear(in_features=1024, out_features=1024, bias=False)
            (k_proj): Linear(in_features=1024, out_features=256, bias=False)
            (v_proj): Linear(in_features=1024, out_features=256, bias=False)
            (o_proj): Linear(in_features=1024, out_features=1024, bias=False)
          )
          (mlp): LigerSwiGLUMLP(
            (gate_proj): Linear(in_features=1024, out_features=2048, bias=False)
            (up_proj): Linear(in_features=1024, out_features=2048, bias=False)
            (down_proj): Linear(in_features=2048, out_features=1024, bias=False)
          )
          (input_layernorm): LigerRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
          (post_attention_layernorm): LigerRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
        )
      )
      (norm): LigerRMSNorm((1024,), eps=1e-05, offset=0.0, in_place=True)
      (rotary_emb): LlamaRotaryEmbedding()
    )
    (lm_head): Linear(in_features=1024, out_features=32064, bias=False)
  )
)

@jp1924 jp1924 requested a review from Tcc0403 March 30, 2025 17:05
@jp1924 jp1924 requested a review from Tcc0403 March 31, 2025 01:33
@Tcc0403 Tcc0403 merged commit f49da8e into linkedin:main Mar 31, 2025
4 of 8 checks passed
@jp1924
Copy link
Contributor Author

jp1924 commented Mar 31, 2025

@Tcc0403 Wow, crazy! The PR is finally finished! Thank you so much!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

5 participants