Skip to content

Self-host llmapi server, make it really easy for accessing LLMs ! 🚀

Notifications You must be signed in to change notification settings

llmapi-io/llmapi-server

Repository files navigation

LLMApi Server

LLMApi Server

Self-host llmapi server

Introdution

中文文档

llmapi-server is an abstract backend that encapsulates a variety of large language models (LLM, such as ChatGPT, GPT-3, GPT-4, etc.), and provides simple access services through OpenAPI

🌟 If it is helpful to you,please star it 🌟

Diagram

graph LR

subgraph llmapi server
OpenAPI --> session
OpenAPI --> pre_post
subgraph backend
style backend fill:#f9f
pre_post-->chatgpt
pre_post-->dall-e
pre_post-->llama
pre_post-->...
end
end
text-->OpenAPI
image-->OpenAPI
embedding-->OpenAPI
others--> OpenAPI

Loading

✨ Supportted backends

  • chatgpt: openai's official ChatGPT interface
  • gpt3: openai's official GPT-3 interface
  • gpt-embedding: openai's official Embedding interface
  • dall-e: openai's official DALL·E interface
  • welm: wechat's llm interface
  • newbing: New Bing search based on ChatGPT(unofficial)

⏳ WIP

  • llama
  • stable diffusion
  • controlNet
  • SAM(meta)

Install & Run

  1. run locally
# python >= 3.8
python3 -m pip install -r requirements.txt

python3 run_api_server.py
  1. run with docker
./build_docker.sh
./start_docker.sh

Visit server

  1. Use the curl command to access:
# 1. Start a new session
curl -X POST -H "Content-Type: application/json" -d '{"bot_type":"mock"}' http://127.0.0.1:5050/v1/chat/start
# response sample: {"code":0,"msg":"Success","session":"123456"}

# 2. chat with LLMs
curl -X POST -H "Content-Type: application/json" -d '{"session":"123456","content":"hello"}' http://127.0.0.1:5050/v1/chat/ask
# response sample: {"code":0,"msg":"Success","reply":"Text mock reply for your prompt:hello","timestamp":1678865301.0842562}

# 3. Close the session and end chat
curl -X POST -H "Content-Type: application/json" -d '{"session":"123456"}' http://127.0.0.1:5050/v1/chat/end
# response: {"code":0,"msg":"Success"}
  1. Using command line tools:llmapi_cli
llmapi_cli --host="http://127.0.0.1:5050" --bot=mock
  1. Integrate in your python code with llmapi_cli module
from llmapi_cli import LLMClient

client = LLMClient(host = "http://127.0.0.1:5050", bot = "mock")

rep = client.ask("hello")

print(rep)

Plug into your LLM's backend !

  1. You need to create a new backend name in the backend directory (assumed to be newllm), you can directly cp -r mock newllm
  2. Referring to the implementation of mock, change the backend name to newllm
  3. In the newllm directory, add the necessary dependencies, and all related development is bound to this directory
  4. Add support for newllm in backend.py