🦑This repository is a Pytorch implementation of MolGAN: An implicit generative model for small molecular graphs.
pip install -r requirements.txt
If you still run into no-such-package
issues, you may just install the required packages by pip or conda.
# Download gdb Dataset and NP/SA scores
bash ./data/download_dataset.sh
# Generate QM9 Dataset
python ./data/sparse_molecular_dataset.py
To train the MolGAN model, you could run the experiment with the following command:
python main_gan.py --lambda_wgan 0.05 --desc "lambda_wgan 0.05"
The lambda_wgan
is a config parameter, which refers to the hyperparamer
lambda_wgan | Valid | Unique | Novel | Solubility |
---|---|---|---|---|
0(full RL) | 78.21 | 93.58 | 97.51 | 0.30 |
0.01 | 80.01 | 95.90 | 97.79 | 0.31 |
0.05 | 77.04 | 97.19 | 99.24 | 0.33 |
0.1 | 69.51 | 96.40 | 98.93 | 0.32 |
0.25 | 68.90 | 95.00 | 98.88 | 0.33 |
0.5 | 73.81 | 96.31 | 100.00 | 0.31 |
0.75 | 82.60 | 95.95 | 99.50 | 0.33 |
1(no RL) | 81.29 | 95.65 | 97.98 | 0.31 |