license | tags | library_name | pipeline_tag | ||||||
---|---|---|---|---|---|---|---|---|---|
apache-2.0 |
|
transformers |
text2text-generation |
This model is a LoRA fine-tuned version of Salesforce/codet5-small for natural language to SQL query generation on the WikiSQL dataset.
It uses PEFT (LoRA) to adapt the base model efficiently with minimal extra parameters.
Useful for learning and prototyping text-to-SQL tasks on simple table schemas.
- Base Model:
Salesforce/codet5-small
- Adapter: LoRA (r=8, alpha=16) on attention
q
andv
modules. - Dataset: WikiSQL (21k train, 3k val)
- Input Format:
question: <QUESTION> table: <TABLE_HEADERS>
- Target: Human-readable SQL query
- Epochs: 1β3 recommended for small runs.
- Framework: π€ Transformers + PEFT
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Replace with your actual HF repo name
model_name = "Mahendra1742/SqlGPT"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Example input
question = "How many employees are in the Marketing department?"
table = "| department | employees |"
prompt = f"question: {question} table: {table}"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=128)
print("OUTPUT :- ")
print(" ")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
question: How many cities have a population over 1 million? table: | City | Population |
SELECT COUNT(*) FROM table WHERE Population > 1000000