-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulation_hybrid_auctions.py
414 lines (398 loc) · 20.9 KB
/
simulation_hybrid_auctions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# -*- coding: utf-8 -*-
#libs
import logging
from itertools import product
from sklearn.preprocessing import MinMaxScaler
from collections import OrderedDict
import pandas as pd
# Own Modules
from sats.pysats import PySats
from hybrid_auctions.hybrid import hybrid
from hybrid_auctions.hybrid_noFR import hybrid_noFR
from hybrid_auctions.hybrid_noFR_noFA import hybrid_noFR_noFA
from mlca.mlca_value_model import ValueModel
import mlca.mlca_util as util
#%% define logger
for handler in logging.root.handlers[:]: logging.root.removeHandler(handler) #clear existing logger
logging.basicConfig(level=logging.WARNING, format='%(asctime)s: %(message)s', datefmt='%H:%M:%S') # log to console
#%% ENTER PARAMETERS HERE
# SATS VALUE MODEL (standard configurations):
sats_value_model = input('Select SATS Model GSVM, LSVM or MRVM: ')
if sats_value_model=='GSVM':
V = ValueModel(name='GSVM', number_of_items=18, local_bidder_ids=[], regional_bidder_ids=list(range(0, 6)), national_bidder_ids=[6], scaler=[None])
# NN Parameters
epochs = [300]
batch_size = [32]
regularization_type = ['l2']
regularization_R = [1e-5] # regional bidder
learning_rate_R = [0.01]
layer_R = [[32, 32]]
dropout_R = [True]
dropout_prob_R = [0.05]
regularization_N = [1e-5] # national bidder
learning_rate_N = [0.01]
layer_N = [[10,10]]
dropout_N = [True]
dropout_prob_N = [0.05]
# MLCA Parameters
number_of_instances = [1] # INPUT NUMBER OF INSTANCES HERE
start_seed = 1
SATS_auction_instance_seeds = [list(range(start_seed, start_seed+n)) for n in number_of_instances] # for instances in (1)
Qround = [7]
init_bids_and_fitted_scaler=[[None,None]]
return_allocation=[True]
return_payments=[True]
calc_efficiency_per_iteration=[True]
# MIP CPLEX parameters
# NN-MIPS
bigM = [2000]
Mip_bounds_tightening = ['IA'] # False ,'IA' or 'LP'
warm_start = [False]
time_limit = [1800] #in sec, 1h = 3600sec
relative_gap = [0.001]
integrality_tol = [1e-6]
attempts_DNN_WDP = [5]
# FT-MIPs
bigM_DSPMIP = [2000]
time_limit_DSPMIP = [1800] #in sec, 1h = 3600sec
relative_gap_DSPMIP = [0.001]
integrality_tol_DSPMIP = [1e-6]
# HYBRID parameters
# Distribution of queries (k_i = \ell_i)
k1=[30] # Random initial queries
k2=[21] # MLCA allocation queries
k3=[20] # Fourier reconstruction queries
k4=[29] # Fourier allocation queries
k5=[0] # MLCA Optional allocation queries
# DSP parameters
shift = ['shift5'] #shift3=FT3, shift4=FT4, shift5=WHT
k_CS = [100] # Support Size returned from compressive sensing = \ell_support
p_CS = [2000] # Superset support Size used in compressive sensing = \ell_superset
fourier_reconstruction = [True] # parameter for wht
elif sats_value_model=='LSVM':
V = ValueModel(name='LSVM', number_of_items=18, local_bidder_ids=[], regional_bidder_ids=list(range(1, 6)), national_bidder_ids=[0], scaler=[None])
# NN Parameters
epochs = [300]
batch_size = [32]
regularization_type = ['l2']
regularization_R = [1e-5] # regional bidder
learning_rate_R = [0.01]
layer_R = [[32, 32]]
dropout_R = [True]
dropout_prob_R = [0.05]
regularization_N = [1e-5] # national bidder
learning_rate_N = [0.01]
layer_N = [[10,10,10]]
dropout_N = [True]
dropout_prob_N = [0.05]
# MLCA Parameters
number_of_instances = [1]
start_seed = 1
SATS_auction_instance_seeds = [list(range(start_seed, start_seed+n)) for n in number_of_instances] # for instances in (1)
Qround = [6]
init_bids_and_fitted_scaler=[[None,None]]
return_allocation=[True]
return_payments=[True]
calc_efficiency_per_iteration=[True]
# MIP CPLEX parameters
# NN-MIPS
bigM = [2000]
Mip_bounds_tightening = ['IA'] # False ,'IA' or 'LP'
warm_start = [False]
time_limit = [1800] #in sec, 1h = 3600sec
relative_gap = [0.001]
integrality_tol = [1e-6]
attempts_DNN_WDP = [5]
# FT-MIPs
bigM_DSPMIP = [2000]
time_limit_DSPMIP = [1800] #in sec, 1h = 3600sec
relative_gap_DSPMIP = [0.001]
integrality_tol_DSPMIP = [1e-6]
# HYBRID parameters
# Distribution of queries (k_i = \ell_i)
k1=[30] # Random initial queries
k2=[30] # MLCA allocation queries
k3=[10] # Fourier reconstruction queries
k4=[30] # Fourier allocation queries
k5=[0] # MLCA Optional allocation queries
# DSP parameters
shift = ['shift5'] #shift3=FT3, shift4=FT4, shift5=WHT
k_CS = [100] # Support Size returned from compressive sensing = \ell_support
p_CS = [2000] # Superset support Size used in compressive sensing = \ell_superset
fourier_reconstruction = [True] # parameter for wht
elif sats_value_model=='MRVM':
V = ValueModel(name='MRVM', number_of_items=98, local_bidder_ids=[0, 1, 2], regional_bidder_ids=[3, 4, 5, 6], national_bidder_ids=[7, 8, 9], scaler=[MinMaxScaler(feature_range=(0, 500))])
# NN Parameters
epochs = [300]
batch_size = [32]
regularization_type = ['l2']
regularization_L = [1e-5] # local bidders
learning_rate_L = [0.01]
layer_L = [[16, 16]]
dropout_L = [True]
dropout_prob_L = [0.05]
regularization_R = [1e-5] # regional bidders
learning_rate_R = [0.01]
layer_R = [[16, 16]]
dropout_R = [True]
dropout_prob_R = [0.05]
regularization_N = [1e-5] # national bidders
learning_rate_N = [0.01]
layer_N = [[16, 16]]
dropout_N = [True]
dropout_prob_N = [0.05]
# MLCA Parameters
number_of_instances = [1]
start_seed = 1
SATS_auction_instance_seeds = [list(range(start_seed, start_seed+n)) for n in number_of_instances] # for instances in (1)
Qround = [4]
init_bids_and_fitted_scaler=[[None,None]]
return_allocation=[True]
return_payments=[True]
calc_efficiency_per_iteration=[True]
# MIP CPLEX parameters
# NN-MIPS
bigM = [2000]
Mip_bounds_tightening = ['IA'] # False ,'IA' or 'LP'
warm_start = [False]
time_limit = [300] #in sec, 1h = 3600sec
relative_gap = [0.01]
integrality_tol = [1e-6]
attempts_DNN_WDP = [5]
# FT-MIPs
bigM_DSPMIP = [2000]
time_limit_DSPMIP = [60] #in sec, 1h = 3600sec
relative_gap_DSPMIP = [0.001]
integrality_tol_DSPMIP = [1e-6]
# HYBRID parameters
# Distribution of queries (k_i = \ell_i)
k1=[30] # Random initial queries
k2=[220] # MLCA allocation queries
k3=[0] # Fourier reconstruction queries
k4=[250] # Fourier allocation queries
k5=[0] # MLCA Optional allocation queries
# DSP parameters
shift = ['shift5'] #shift3=FT3, shift4=FT4, shift5=WHT
k_CS = [500] # Support Size returned from compressive sensing = \ell_support
p_CS = [2000] # Superset support Size used in compressive sensing = \ell_superset
fourier_reconstruction = [False] # parameter for wht
else:
raise NotImplementedError('Selected SATS value model not implemented.')
if not fourier_reconstruction[0]:
print('TOTAL QUERIES:', sum(k1+k2+k4+k5))
else:
print('TOTAL QUERIES:', sum(k1+k2+k3+k4+k5))
# %% CREATE CONFIG FILES
# (i) Neural Network Parameters
NN_keys = ['regularization', 'learning_rate', 'architecture', 'dropout', 'dropout_prob','epochs','batch_size','regularization_type']
L_NN_parameters = None
if V.name == 'MRVM':
L_NN_parameters = list(product(regularization_L, learning_rate_L, layer_L, dropout_L, dropout_prob_L, epochs, batch_size,regularization_type))
L_NN_parameters = [OrderedDict(zip(NN_keys, x)) for x in L_NN_parameters]
R_NN_parameters = list(product(regularization_R, learning_rate_R, layer_R, dropout_R, dropout_prob_R, epochs, batch_size,regularization_type))
R_NN_parameters = [OrderedDict(zip(NN_keys, x)) for x in R_NN_parameters]
N_NN_parameters = list(product(regularization_N, learning_rate_N, layer_N, dropout_N, dropout_prob_N, epochs, batch_size,regularization_type))
N_NN_parameters = [OrderedDict(zip(NN_keys, x)) for x in N_NN_parameters]
if L_NN_parameters is not None:
bidder_keys = ['Local', 'Regional', 'National']
NN_parameters = list(product(L_NN_parameters, R_NN_parameters, N_NN_parameters))
NN_parameters = [OrderedDict(zip(bidder_keys, x)) for x in NN_parameters]
else:
bidder_keys = ['Regional', 'National']
NN_parameters = list(product(R_NN_parameters, N_NN_parameters))
NN_parameters = [OrderedDict(zip(bidder_keys, x)) for x in NN_parameters]
NN_parameters = V.parameters_to_bidder_id(NN_parameters)
# (ii) Mixed Integer Program Parameters
MIP_keys =['bigM', 'mip_bounds_tightening', 'warm_start', 'time_limit', 'relative_gap','integrality_tol','attempts_DNN_WDP','bigM_DSPMIP','time_limit_DSPMIP','relative_gap_DSPMIP','integrality_tol_DSPMIP']
MIP_parameters = list(product(bigM, Mip_bounds_tightening, warm_start, time_limit, relative_gap, integrality_tol, attempts_DNN_WDP,bigM_DSPMIP,time_limit_DSPMIP,relative_gap_DSPMIP,integrality_tol_DSPMIP))
MIP_parameters = [OrderedDict(zip(MIP_keys, x)) for x in MIP_parameters]
# (iii) Set all parameters
Parameter_keys = ['SATS_domain_name','SATS_auction_instance_seeds', 'Qround','NN_parameters', 'MIP_parameters','scaler', 'number_of_instances_in_config',
'init_bids_and_fitted_scaler', 'return_allocation', 'return_payments', 'calc_efficiency_per_iteration','k1','k2','k3','k4','k5','k_CS','p_CS','shift','fourier_reconstruction']
CONFIGS = [OrderedDict(zip(Parameter_keys, x)) for x in list(product([V.name], SATS_auction_instance_seeds, Qround, NN_parameters, MIP_parameters,
V.scaler, number_of_instances,init_bids_and_fitted_scaler,return_allocation,return_payments,
calc_efficiency_per_iteration, k1, k2, k3, k4, k5, k_CS, p_CS, shift, fourier_reconstruction))]
j = 0
for x in CONFIGS:
print('CONFIG {}'.format(j))
util.pretty_print_dict(x, printing=True)
print()
j = j + 1
CONFIGS_REP = util.helper_f(CONFIGS)[0]
# %% START MECHANISMS
mechanism = input('SELECT MECHANISM FROM: Hybrid=1, Hybrid-FR=2, Hybrid-FR-FA=3 via inputting integer from {1,2,3}.')
EFFICIENCY = {}
TOTAL_TIME_ELAPSED = {}
EFFICIENCY_PER_ITER = {}
REVENUE = {}
DISTRIBUTION_SCW = {}
if mechanism == '1':
logging.warning('Running Hybrid Mechanism')
for configdict in CONFIGS_REP:
seed = 'Seed {}'.format(configdict['SATS_auction_instance_seed'])
# RUN HYBRID
R = hybrid(configdict)
#EFFICIENCY
EFFICIENCY[seed] = R[1]['MLCA Efficiency']
#TOTAL TIME ELAPSED
TOTAL_TIME_ELAPSED[seed] = R[1]['Statistics']['Total Time Elapsed'] # (d,h,m,s)
#äEFFICIENCY PER ITERATION
EFFICIENCY_PER_ITER[seed] = R[1]['Statistics']['Efficiency per Iteration']
#REVENUE
REVENUE[seed] = R[1]['Statistics']['Relative Revenue']
# DISTRIBUTION OF SCW
if sats_value_model == 'LSVM':
SATS_auction_instance = PySats.getInstance().create_lsvm(seed=configdict['SATS_auction_instance_seed'], isLegacyLSVM=True)
National_index = ['Bidder_0']
Regional_index = ['Bidder_1', 'Bidder_2', 'Bidder_3', 'Bidder_4', 'Bidder_5']
if sats_value_model == 'GSVM':
SATS_auction_instance = PySats.getInstance().create_gsvm(seed=configdict['SATS_auction_instance_seed'], isLegacyGSVM=True)
National_index = ['Bidder_6']
Regional_index = ['Bidder_0', 'Bidder_1', 'Bidder_2', 'Bidder_3', 'Bidder_4', 'Bidder_5']
if sats_value_model == 'MRVM':
SATS_auction_instance = PySats.getInstance().create_mrvm(seed=configdict['SATS_auction_instance_seed'])
National_index = ['Bidder_7', 'Bidder_8', 'Bidder_9']
Regional_index = ['Bidder_3', 'Bidder_4', 'Bidder_5', 'Bidder_6']
Local_index = ['Bidder_0', 'Bidder_1', 'Bidder_2']
_,SATS_SCW = SATS_auction_instance.get_efficient_allocation()
MECHANISM_ALLOCATION = pd.DataFrame.from_dict(R[1]['MLCA Allocation']).transpose()
Local_percentages = 0
if sats_value_model == 'MRVM':
Local_percentages = MECHANISM_ALLOCATION['value'][Local_index].sum()/SATS_SCW
Regional_percentages = MECHANISM_ALLOCATION['value'][Regional_index].sum()/SATS_SCW
National_percentages = MECHANISM_ALLOCATION['value'][National_index].sum()/SATS_SCW
DISTRIBUTION_SCW[seed] = {'Local Bidders':Local_percentages, 'Regional Bidders':Regional_percentages, 'National Bidders': National_percentages}
# PRINT STORED RESULTS
logging.warning('\n')
logging.warning('FINAL RESULTS')
logging.warning('--------------------------------------------------------------')
logging.warning('Efficiency : {} %'.format(round(100*EFFICIENCY[seed], 2)))
logging.warning('Time elapsed : {} h'.format(round(TOTAL_TIME_ELAPSED[seed][0]*24+TOTAL_TIME_ELAPSED[seed][1]+TOTAL_TIME_ELAPSED[seed][2]/60+TOTAL_TIME_ELAPSED[seed][3]/3600,2)))
logging.warning('Relative Revenue : {} %'.format(round(100*REVENUE[seed],2), '%'))
logging.warning('Distribution of SCW')
if sats_value_model == 'MRVM':
logging.warning('Local Bidders : {} %'.format(round(Local_percentages*100, 2)))
logging.warning('Regional Bidders : {} %'.format(round(Regional_percentages*100, 2)))
logging.warning('National Bidders : {} %'.format(round(National_percentages*100, 2)))
logging.warning('Efficiency per Iteration')
for k,v in EFFICIENCY_PER_ITER[seed].items():
logging.warning(k)
for k2,v2 in v.items():
logging.warning('Iteration {} : {} %'.format(k2,round(v2*100,2)))
logging.warning('--------------------------------------------------------------')
logging.warning('\n')
del R
elif mechanism == '2':
logging.warning('Running Hybrid-FR Mechanism')
for configdict in CONFIGS_REP:
seed = 'Seed {}'.format(configdict['SATS_auction_instance_seed'])
#RUN HYBRID-FR
R = hybrid_noFR(configdict)
#EFFICIENCY
EFFICIENCY[seed] = R[1]['MLCA Efficiency']
#TOTAL TIME ELAPSED
TOTAL_TIME_ELAPSED[seed] = R[1]['Statistics']['Total Time Elapsed']
#äEFFICIENCY PER ITERATION
EFFICIENCY_PER_ITER[seed] = R[1]['Statistics']['Efficiency per Iteration']
#REVENUE
REVENUE[seed] = R[1]['Statistics']['Relative Revenue']
# DISTRIBUTION OF SCW
if sats_value_model == 'LSVM':
SATS_auction_instance = PySats.getInstance().create_lsvm(seed=configdict['SATS_auction_instance_seed'], isLegacyLSVM=True)
National_index = ['Bidder_0']
Regional_index = ['Bidder_1', 'Bidder_2', 'Bidder_3', 'Bidder_4', 'Bidder_5']
if sats_value_model == 'GSVM':
SATS_auction_instance = PySats.getInstance().create_gsvm(seed=configdict['SATS_auction_instance_seed'], isLegacyGSVM=True)
National_index = ['Bidder_6']
Regional_index = ['Bidder_0', 'Bidder_1', 'Bidder_2', 'Bidder_3', 'Bidder_4', 'Bidder_5']
if sats_value_model == 'MRVM':
SATS_auction_instance = PySats.getInstance().create_mrvm(seed=configdict['SATS_auction_instance_seed'])
National_index = ['Bidder_7', 'Bidder_8', 'Bidder_9']
Regional_index = ['Bidder_3', 'Bidder_4', 'Bidder_5', 'Bidder_6']
Local_index = ['Bidder_0', 'Bidder_1', 'Bidder_2']
_,SATS_SCW = SATS_auction_instance.get_efficient_allocation()
MECHANISM_ALLOCATION = pd.DataFrame.from_dict(R[1]['MLCA Allocation']).transpose()
Local_percentages = 0
if sats_value_model == 'MRVM':
Local_percentages = MECHANISM_ALLOCATION['value'][Local_index].sum()/SATS_SCW
Regional_percentages = MECHANISM_ALLOCATION['value'][Regional_index].sum()/SATS_SCW
National_percentages = MECHANISM_ALLOCATION['value'][National_index].sum()/SATS_SCW
DISTRIBUTION_SCW[seed] = {'Local Bidders':Local_percentages, 'Regional Bidders':Regional_percentages, 'National Bidders': National_percentages}
# PRINT STORED RESULTS
logging.warning('\n')
logging.warning('FINAL RESULTS')
logging.warning('--------------------------------------------------------------')
logging.warning('Efficiency : {} %'.format(round(100*EFFICIENCY[seed], 2)))
logging.warning('Time elapsed : {} h'.format(round(TOTAL_TIME_ELAPSED[seed][0]*24+TOTAL_TIME_ELAPSED[seed][1]+TOTAL_TIME_ELAPSED[seed][2]/60+TOTAL_TIME_ELAPSED[seed][3]/3600,2)))
logging.warning('Relative Revenue : {} %'.format(round(100*REVENUE[seed],2), '%'))
logging.warning('Distribution of SCW')
if sats_value_model == 'MRVM':
logging.warning('Local Bidders : {} %'.format(round(Local_percentages*100, 2)))
logging.warning('Regional Bidders : {} %'.format(round(Regional_percentages*100, 2)))
logging.warning('National Bidders : {} %'.format(round(National_percentages*100, 2)))
logging.warning('Efficiency per Iteration')
for k,v in EFFICIENCY_PER_ITER[seed].items():
logging.warning(k)
for k2,v2 in v.items():
logging.warning('Iteration {} : {} %'.format(k2,round(v2*100,2)))
logging.warning('--------------------------------------------------------------')
logging.warning('\n')
del R
elif mechanism=='3':
logging.warning('Running Hybrid-FR-FA Mechanism')
for configdict in CONFIGS_REP:
seed = 'Seed {}'.format(configdict['SATS_auction_instance_seed'])
#RUN HYBRID-FR-FA
R = hybrid_noFR_noFA(configdict)
#EFFICIENCY
EFFICIENCY[seed] = R[1]['MLCA Efficiency']
#TOTAL TIME ELAPSED
TOTAL_TIME_ELAPSED[seed] = R[1]['Statistics']['Total Time Elapsed']
#äEFFICIENCY PER ITERATION
EFFICIENCY_PER_ITER[seed] = R[1]['Statistics']['Efficiency per Iteration']
#REVENUE
REVENUE[seed] = R[1]['Statistics']['Relative Revenue']
# DISTRIBUTION OF SCW
if sats_value_model == 'LSVM':
SATS_auction_instance = PySats.getInstance().create_lsvm(seed=configdict['SATS_auction_instance_seed'], isLegacyLSVM=True)
National_index = ['Bidder_0']
Regional_index = ['Bidder_1', 'Bidder_2', 'Bidder_3', 'Bidder_4', 'Bidder_5']
if sats_value_model == 'GSVM':
SATS_auction_instance = PySats.getInstance().create_gsvm(seed=configdict['SATS_auction_instance_seed'], isLegacyGSVM=True)
National_index = ['Bidder_6']
Regional_index = ['Bidder_0', 'Bidder_1', 'Bidder_2', 'Bidder_3', 'Bidder_4', 'Bidder_5']
if sats_value_model == 'MRVM':
SATS_auction_instance = PySats.getInstance().create_mrvm(seed=configdict['SATS_auction_instance_seed'])
National_index = ['Bidder_7', 'Bidder_8', 'Bidder_9']
Regional_index = ['Bidder_3', 'Bidder_4', 'Bidder_5', 'Bidder_6']
Local_index = ['Bidder_0', 'Bidder_1', 'Bidder_2']
_,SATS_SCW = SATS_auction_instance.get_efficient_allocation()
MECHANISM_ALLOCATION = pd.DataFrame.from_dict(R[1]['MLCA Allocation']).transpose()
Local_percentages = 0
if sats_value_model == 'MRVM':
Local_percentages = MECHANISM_ALLOCATION['value'][Local_index].sum()/SATS_SCW
Regional_percentages = MECHANISM_ALLOCATION['value'][Regional_index].sum()/SATS_SCW
National_percentages = MECHANISM_ALLOCATION['value'][National_index].sum()/SATS_SCW
DISTRIBUTION_SCW[seed] = {'Local Bidders':Local_percentages, 'Regional Bidders':Regional_percentages, 'National Bidders': National_percentages}
# PRINT STORED RESULTS
logging.warning('\n')
logging.warning('FINAL RESULTS')
logging.warning('--------------------------------------------------------------')
logging.warning('Efficiency : {} %'.format(round(100*EFFICIENCY[seed], 2)))
logging.warning('Time elapsed : {} h'.format(round(TOTAL_TIME_ELAPSED[seed][0]*24+TOTAL_TIME_ELAPSED[seed][1]+TOTAL_TIME_ELAPSED[seed][2]/60+TOTAL_TIME_ELAPSED[seed][3]/3600,2)))
logging.warning('Relative Revenue : {} %'.format(round(100*REVENUE[seed],2), '%'))
logging.warning('Distribution of SCW')
if sats_value_model == 'MRVM':
logging.warning('Local Bidders : {} %'.format(round(Local_percentages*100, 2)))
logging.warning('Regional Bidders : {} %'.format(round(Regional_percentages*100, 2)))
logging.warning('National Bidders : {} %'.format(round(National_percentages*100, 2)))
logging.warning('Efficiency per Iteration')
for k,v in EFFICIENCY_PER_ITER[seed].items():
logging.warning(k)
for k2,v2 in v.items():
logging.warning('Iteration {} : {} %'.format(k2,round(v2*100,2)))
logging.warning('--------------------------------------------------------------')
logging.warning('\n')
del R
else:
raise NotImplementedError('Mechanism {} not implemented yet.'.format(mechanism))